Articles | Volume 5, issue 1
https://doi.org/10.5194/ascmo-5-57-2019
https://doi.org/10.5194/ascmo-5-57-2019
16 Apr 2019
 | 16 Apr 2019

Fitting a stochastic fire spread model to data

X. Joey Wang, John R. J. Thompson, W. John Braun, and Douglas G. Woolford

Related subject area

Statistics
Modeling general circulation model bias via a combination of localized regression and quantile mapping methods
Benjamin James Washington, Lynne Seymour, and Thomas L. Mote
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 1–28, https://doi.org/10.5194/ascmo-9-1-2023,https://doi.org/10.5194/ascmo-9-1-2023, 2023
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory
Katarina Lashgari, Gudrun Brattström, Anders Moberg, and Rolf Sundberg
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 225–248, https://doi.org/10.5194/ascmo-8-225-2022,https://doi.org/10.5194/ascmo-8-225-2022, 2022
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022,https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary
A conditional approach for joint estimation of wind speed and direction under future climates
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, https://doi.org/10.5194/ascmo-8-205-2022,https://doi.org/10.5194/ascmo-8-205-2022, 2022
Short summary
Comparing climate time series – Part 2: A multivariate test
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 73–85, https://doi.org/10.5194/ascmo-7-73-2021,https://doi.org/10.5194/ascmo-7-73-2021, 2021
Short summary

Cited articles

Albert-Green, A., Dean, C. B., Martell, D. L., and Woolford, D. G.: A methodology for investigating trends in changes in the timing of the fire season with applications to lightning-caused forest fires in Alberta and Ontario, Canada, Can. J. Forest Res., 43, 39–45, 2012. 
Anderson, K., Reuter, G., and Flannigan, M.: Fire-growth modeling using meteorological data with random and systematic perturbations, Int. J. Wildland Fire, 16, 174–182, 2007. 
Boychuk, D., Braun, W. J., Kulperger, R. J., Krougly, Z. L., and Stanford, D. A.: A stochastic model for forest fire growth, INFOR, 45, 9–16, 2007. 
Braun, W. J. and Kulperger, R. J.: Differential equations for moments of an Interacting particle process on a lattice, J. Math. Biol., 31, 199–214, 1993. 
Braun, W. J. and Woolford, D. G.: Assessing a stochastic fire spread simulator, J. Environ. Inform., 22, 1–12, 2013. 
Download
Short summary
This paper presents the analysis of data from small-scale laboratory experimental smouldering fires that were digitally video-recorded. The video images of these fires bear a resemblance to remotely sensed images of wildfires and provide an opportunity to fit and assess a spatial model for fire spread that attempts to account for uncertainty in fire growth. We found that the fitting method is feasible, and the spatial model provides a suitable mathematical for the fire spread process.