Baran, S.: Probabilistic Wind Speed Forecasting Using Bayesian Model
Averaging with Truncated Normal Components, Comput. Stat. Data
An., 75, 227–238, https://doi.org/10.1016/j.csda.2014.02.013, 2014. a

Baran, S. and Lerch, S.: Log-Normal Distribution Based Ensemble Model Output
Statistics Models for Probabilistic Wind-Speed Forecasting, Q. J. Roy. Meteor. Soc., 141, 2289–2299,
https://doi.org/10.1002/qj.2521, 2015. a

Baran, S. and Lerch, S.: Mixture EMOS Model for Calibrating Ensemble
Forecasts of Wind Speed, Environmetrics, 27, 116–130,
https://doi.org/10.1002/env.2380, 2016. a

Buizza, R., Houtekamer, P. L., Pellerin, G., Toth, Z., Zhu, Y., and Wei, M.: A Comparison of the ECMWF, MSC, and NCEP Global Ensemble
Prediction Systems, Mon. Weather Rev., 133, 1076–1097,
https://doi.org/10.1175/MWR2905.1, 2005. a

Courtney, J. F., Lynch, P., and Sweeney, C.: High Resolution Forecasting for
Wind Energy Applications Using Bayesian Model Averaging, Tellus A, 65, 19669,
https://doi.org/10.3402/tellusa.v65i0.19669, 2013. a

Eide, S. S., Bremnes, J. B., and Steinsland, I.: Bayesian Model Averaging
for Wind Speed Ensemble Forecasts Using Wind Speed and Direction,
Weather Forecast., 32, 2217–2227, https://doi.org/10.1175/WAF-D-17-0091.1, 2017. a, b, c, d

EuropeanCommission: Time Based Separation at Heathrow,
available at: https://ec.europa.eu/transport/modes/air/ses/ses-award-2016/projects/time-based-separation-heathrow_en,
(last access: 16 February 2019), 2018. a

Gamerman, D.: Sampling from the Posterior Distribution in Generalized Linear
Mixed Models, Stat. Comput., 7, 57–68,
https://doi.org/10.1023/A:1018509429360, 1997. a

Gebetsberger, M., Messner, J. W., Mayr, G. J., and Zeileis, A.: Fine-Tuning
Nonhomogeneous Regression for Probabilistic Precipitation Forecasts:
Unanimous Predictions, Heavy Tails, and Link Functions, Mon.
Weather Rev., 145, 4693–4708, https://doi.org/10.1175/MWR-D-16-0388.1, 2017. a

Genz, A. and Bretz, F.: Computation of Multivariate Normal and t
Probabilities, Lecture Notes in Statistics, Springer-Verlag,
Heidelberg, Germany, 2009. a

Glahn, H. R. and Lowry, D. A.: The Use of Model Output Statistics
(MOS) in Objective Weather Forecasting, J. Appl.
Meteorol., 11, 1203–1211,
https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2, 1972. a, b

Gneiting, T.: Editorial: Probabilistic Forecasting, J. R.
Stat. Soc. A Stat., 171, 319–321,
https://doi.org/10.1111/j.1467-985X.2007.00522.x, 2008. a, b

Gneiting, T. and Katzfuss, M.: Probabilistic Forecasting, Ann. Rev. Stat. Appl., 1, 125–151,
https://doi.org/10.1146/annurev-statistics-062713-085831, 2014. a

Gneiting, T. and Raftery, A. E.: Strictly Proper Scoring Rules,
Prediction, and Estimation, J. Am. Stat.
Assoc., 102, 359–378, https://doi.org/10.1198/016214506000001437, 2007. a, b, c

Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L., and Johnson, N. A.:
Assessing Probabilistic Forecasts of Multivariate Quantities, with an
Application to Ensemble Predictions of Surface Winds, TEST, 17, 211–235,
https://doi.org/10.1007/s11749-008-0114-x, 2008. a, b

Good, I. J.: Rational Decisions, J. Roy. Stat. Soc. B Met., 14, 107–114, 1952. a

Hastie, T. and Tibshirani, R.: Generalized Additive Models, Stat.
Sci., 1, 297–310, 1986. a, b

Jordan, A., Krüger, F., and Lerch, S.: Evaluating Probabilistic Forecasts
with scoringRules, J. Stat. Softw., accepted, 2019. a, b, c

Klein, N., Kneib, T., Klasen, S., and Lang, S.: Bayesian Structured Additive
Distributional Regression for Multivariate Responses, J. R.
Stat. Soc. C-Appl., 64, 569–591,
https://doi.org/10.1111/rssc.12090, 2014. a

Kunkel, K. E., Karl, T. R., Brooks, H., Kossin, J., Lawrimore, J. H., Arndt,
D., Bosart, L., Changnon, D., Cutter, S. L., Doesken, N., Emanuel, K.,
Groisman, P. Y., Katz, R. W., Knutson, T., O'Brien, J., Paciorek, C. J.,
Peterson, T. C., Redmond, K., Robinson, D., Trapp, J., Vose, R., Weaver, S.,
Wehner, M., Wolter, K., and Wuebbles, D.: Monitoring and Understanding
Trends in Extreme Storms: State of Knowledge, B.
Am. Meteorol. Soc., 94, 499–514,
https://doi.org/10.1175/BAMS-D-11-00262.1, 2012. a

Lerch, S.: Bivariate EMOS Model for Wind Vectors of Schuhen et al. (2012), available at: https://github.com/slerch/bivariate_EMOS, last access: 16 May 2019. a

Lerch, S. and Thorarinsdottir, T. L.: Comparison of Non-Homogeneous Regression Models for Probabilistic Wind Speed Forecasting, Tellus A, 65, 21206, https://doi.org/10.3402/tellusa.v65i0.21206,
2013. a

Lindsey, J. K.: Parametric Statistical Inference, Oxford University
Press, Oxford, New York, USA, 1996. a

Messner, J. W., Mayr, G. J., Wilks, D. S., and Zeileis, A.: Extending
Extended Logistic Regression: Extended versus Separate versus
Ordered versus Censored, Mon. Weather Rev., 142, 3003–3014,
https://doi.org/10.1175/MWR-D-13-00355.1, 2014a. a

Messner, J. W., Mayr, G. J., Zeileis, A., and Wilks, D. S.: Heteroscedastic
Extended Logistic Regression for Postprocessing of Ensemble
Guidance, Mon. Weather Rev., 142, 448–456,
https://doi.org/10.1175/mwr-d-13-00271.1, 2014b. a

NASA JPL: NASA Shuttle Radar Topography Mission Global 30 Arc Second
[Data Set], NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL30.002, 2013. a

Palmer, T. N.: The Economic Value of Ensemble Forecasts as a Tool for Risk
Assessment: From Days to Decades, Q. J. Roy.
Meteor. Soc., 128, 747–774, https://doi.org/10.1256/0035900021643593, 2002. a

Pinson, P.: Adaptive Calibration of (*u*,*v*)-Wind Ensemble Forecasts,
Q. J. Roy. Meteor. Soc., 138, 1273–1284,
https://doi.org/10.1002/qj.1873, 2012. a, b, c, d, e, f, g, h

Pinson, P. and Tastu, J.: Discrimination Ability of the Energy Score,
Report, Technical University of Denmark (DTU), Kgs. Lyngby,
available at: http://orbit.dtu.dk/files/56966842/tr13_15_Pinson_Tastu.pdf
(last access: 16 February 2019), 2013. a

R Core Team: R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org, last access: 20 December 2018. a

Rigby, R. A. and Stasinopoulos, D. M.: Generalized Additive Models for
Location, Scale and Shape, J. R. Stat. Soc. C-Appl., 54, 507–554, https://doi.org/10.1111/j.1467-9876.2005.00510.x,
2005. a, b

Schefzik, R., Thorarinsdottir, T. L., and Gneiting, T.: Uncertainty
Quantification in Complex Simulation Models Using Ensemble Copula Coupling,
Stat. Sci., 28, 616–640, https://doi.org/10.1214/13-STS443, 2013. a

Scheuerer, M. and Möller, D.: Probabilistic Wind Speed Forecasting on a
Grid Based on Ensemble Model Output Statistics, Ann. Appl.
Stat., 9, 1328–1349, https://doi.org/10.1214/15-AOAS843, 2015. a

Schuhen, N., Thorarinsdottir, T. L., and Gneiting, T.: Ensemble Model Output
Statistics for Wind Vectors, Mon. Weather Rev., 140, 3204–3219,
https://doi.org/10.1175/MWR-D-12-00028.1, 2012. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o

Sloughter, J. M., Gneiting, T., and Raftery, A. E.: Probabilistic Wind Speed
Forecasting Using Ensembles and Bayesian Model Averaging, J.
Am. Stat. Assoc., 105, 25–35,
https://doi.org/10.1198/jasa.2009.ap08615, 2010.
a

Taillardat, M., Mestre, O., Zamo, M., and Naveau, P.: Calibrated Ensemble
Forecasts Using Quantile Regression Forests and Ensemble Model Output
Statistics, Mon. Weather Rev., 144, 2375–2393,
https://doi.org/10.1175/MWR-D-15-0260.1, 2016. a

Thorarinsdottir, T. L. and Gneiting, T.: Probabilistic Forecasts of Wind Speed:
Ensemble Model Output Statistics by Using Heteroscedastic Censored
Regression, J. R. Stat. Soc. A Stat., 173, 371–388, https://doi.org/10.1111/j.1467-985X.2009.00616.x, 2010. a

Umlauf, N., Klein, N., and Zeileis, A.: BAMLSS: Bayesian Additive
Models for Location, Scale, and Shape (and Beyond), J. Comput. Graph. Stat., 27, 612–627,
https://doi.org/10.1080/10618600.2017.1407325, 2018. a, b

Vislocky, R. L. and Fritsch, J. M.: Generalized Additive Models versus
Linear Regression in Generating Probabilistic MOS Forecasts of
Aviation Weather Parameters, Weather Forecast., 10, 669–680,
https://doi.org/10.1175/1520-0434(1995)010<0669:GAMVLR>2.0.CO;2, 1995. a

Vose, R. S., Applequist, S., Bourassa, M. A., Pryor, S. C., Barthelmie, R. J.,
Blanton, B., Bromirski, P. D., Brooks, H. E., DeGaetano, A. T., Dole, R. M.,
Easterling, D. R., Jensen, R. E., Karl, T. R., Katz, R. W., Klink, K., Kruk,
M. C., Kunkel, K. E., MacCracken, M. C., Peterson, T. C., Shein, K., Thomas,
B. R., Walsh, J. E., Wang, X. L., Wehner, M. F., Wuebbles, D. J., and Young,
R. S.: Monitoring and Understanding Changes in Extremes:
Extratropical Storms, Winds, and Waves, B. Am.
Meteorol. Soc., 95, 377–386, https://doi.org/10.1175/BAMS-D-12-00162.1, 2013. a

WindEurope: Wind Energy in Europe Scenarios for 2030, Tech. rep.,
available at: https://windeurope.org/about-wind/reports/wind-energy-in-europe-scenarios-for-2030/
(last access: 16 February 2019), 2017. a

Wood, S. N.: Generalized Additive Models: An Introduction with R,
Chapman and Hall/CRC, https://doi.org/10.1201/9781315370279, 2017. a, b, c