Journal cover Journal topic
Advances in Statistical Climatology, Meteorology and Oceanography An international open-access journal on applied statistics
Journal topic
ASCMO | Articles | Volume 4, issue 1/2
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 53-63, 2018
https://doi.org/10.5194/ascmo-4-53-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 53-63, 2018
https://doi.org/10.5194/ascmo-4-53-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  06 Dec 2018

06 Dec 2018

An integration and assessment of multiple covariates of nonstationary storm surge statistical behavior by Bayesian model averaging

Tony E. Wong
Related authors  
BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections
Tony E. Wong, Alexander M. R. Bakker, Kelsey Ruckert, Patrick Applegate, Aimée B. A. Slangen, and Klaus Keller
Geosci. Model Dev., 10, 2741-2760, https://doi.org/10.5194/gmd-10-2741-2017,https://doi.org/10.5194/gmd-10-2741-2017, 2017
Short summary
Related subject area  
Statistics
Probabilistic evaluation of competing climate models
Amy Braverman, Snigdhansu Chatterjee, Megan Heyman, and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 93-105, https://doi.org/10.5194/ascmo-3-93-2017,https://doi.org/10.5194/ascmo-3-93-2017, 2017
Short summary
Assessing NARCCAP climate model effects using spatial confidence regions
Joshua P. French, Seth McGinnis, and Armin Schwartzman
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 67-92, https://doi.org/10.5194/ascmo-3-67-2017,https://doi.org/10.5194/ascmo-3-67-2017, 2017
Short summary
Generalised block bootstrap and its use in meteorology
László Varga and András Zempléni
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 55-66, https://doi.org/10.5194/ascmo-3-55-2017,https://doi.org/10.5194/ascmo-3-55-2017, 2017
Short summary
Estimating trends in the global mean temperature record
Andrew Poppick, Elisabeth J. Moyer, and Michael L. Stein
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 33-53, https://doi.org/10.5194/ascmo-3-33-2017,https://doi.org/10.5194/ascmo-3-33-2017, 2017
Short summary
Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression
John Tipton, Mevin Hooten, and Simon Goring
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 1-16, https://doi.org/10.5194/ascmo-3-1-2017,https://doi.org/10.5194/ascmo-3-1-2017, 2017
Short summary
Cited articles  
Arns, A., Wahl, T., Haigh, I. D., Jensen, J., and Pattiaratchi, C.: Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise, Coast. Eng., 81, 51–66, https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013. 
Buchanan, M. K., Oppenheimer, M., and Kopp, R. E.: Amplification of flood frequencies with local sea level rise and emerging flood regimes, Environ. Res. Lett., 12, 064009, https://doi.org/10.1088/1748-9326/aa6cb3, 2017. 
Bulteau, T., Idier, D., Lambert, J., and Garcin, M.: How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France), Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, 2015. 
Caldwell, P. C., Merrfield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA Natl. Centers Environ. Information, Dataset, https://doi.org/10.7289/V5V40S7W, 2015. 
Ceres, R., Forest, C. E., and Keller, K.: Understanding the detectability of potential changes to the 100-year peak storm surge, Clim. Change, 145, 221–235, https://doi.org/10.1007/s10584-017-2075-0, 2017. 
Publications Copernicus
Download
Short summary
Millions of people worldwide are at a risk of coastal flooding, and this number will increase as the climate continues to change. This study analyzes how climate change affects future flood hazards. A new model that uses multiple climate variables for flood hazard is developed. For the case study of Norfolk, Virginia, the model predicts 23 cm higher flood levels relative to previous work. This work shows the importance of accounting for climate change in effectively managing coastal risks.
Millions of people worldwide are at a risk of coastal flooding, and this number will increase as...
Citation
Share