Asseng, S., Foster, I., and Turner, N.: The impact of temperature variability
on wheat yields, Glob. Change Biol., 17, 997–1012, 2011. a
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B.,
Cammarano,
D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds,
M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J.,
Basso, B., Biernath, C., Challinor, A. J., Sanctis, G. D., Doltra, J.,
Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A.,
Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler,
A.-K., Müller, C., Kumar, S. N., Nendel, C., O'Leary, G., Olesen, J. E.,
Palosuo, T., Priesack, E., Rezaei, E. E., Ruane, A. C., Semenov, M. A.,
Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao,
F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and
Zhu, Y.: Rising temperatures reduce global wheat production, Nature Climate
Change, 5, 143, https://doi.org/10.1038/nclimate2470, 2015. a
Barlow, K., Christy, B., O'Leary, G., Riffkin, P., and Nuttall, J.:
Simulating the impact of extreme heat and frost events on wheat crop
production: A review, Field Crop. Res., 171, 109–119,
https://doi.org/10.1016/j.fcr.2014.11.010, 2015. a
Benestad, R.: Downscaling Climate Information, Oxford Research
Encyclopedia
of Climate Science, Oxford University Press,
https://doi.org/10.1093/acrefore/9780190228620.013.27, 2016. a
Benestad, R.: Heatwave duration, https://doi.org/10.6084/m9.figshare.5769345.v2, 2018. a
Benestad, R., Parding, K., Dobler, A., and Mezghani, A.: A strategy to
effectively make use of large volumes of climate data for climate change
adaptation, Climate Services, 6, 48–54, https://doi.org/10.1016/j.cliser.2017.06.013,
2017a. a
Benestad, R., Sillmann, J., Thorarinsdottir, T. L., Guttorp, P., Mesquita, M.
d. S., Tye, M. R., Uotila, P., Maule, C. F., Thejll, P., Drews, M., and
Parding, K. M.: New vigour involving statisticians to overcome ensemble
fatigue, Nature Climate Change, 7, 697–703, https://doi.org/10.1038/nclimate3393,
2017b. a, b
Benestad, R. E.: A comparison between two empirical downscaling strategies,
Int. J. Climatol., 21, 1645–1668, https://doi.org/10.1002/joc.703, 2001. a
Benestad, R. E.: What can present climate models tell us about climate
change?,
Climatic Change, 59, 311–332, 2003. a
Benestad, R. E., Chen, D., Mezghani, A., Fan, L., and Parding, K.: On using
principal components to represent stations in empirical-statistical
downscaling, Tellus A, 67, 1, https://doi.org/10.3402/tellusa.v67.28326,
2015a. a, b
Benestad, R. E., Mezghani, A., and Parding, K. M.: esd V1.0, Zenodo,
https://doi.org/10.5281/zenodo.29385, 2015b. a, b, c
Benestad, R. E., Parding, K. M., Isaksen, K., and Mezghani, A.: Climate
change
and projections for the Barents region: what is expected to change and what
will stay the same?, Environ. Res. Lett., 11, 054017,
https://doi.org/10.1088/1748-9326/11/5/054017, 2016. a, b, c, d, e, f, g
Chen, H., Xu, C.-Y., and Guo, S.: Comparison and evaluation of multiple
GCMs,
statistical downscaling and hydrological models in the study of climate
change impacts on runoff, J. Hydrol., 434–435, 36–45,
https://doi.org/10.1016/j.jhydrol.2012.02.040, 2012. a
Colombo, A. F., Etkin, D., and Karney, B. W.: Climate Variability and the
Frequency of Extreme Temperature Events for Nine Sites across
Canada: Implications for Power Usage, J. Climate, 12,
2490–2502, https://doi.org/10.1175/1520-0442(1999)012<2490:CVATFO>2.0.CO;2, 1999. a
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the
role of natural variability in future North American climate, Nature
Climate Change, 2, 775–779, 2012. a
Dobson, A.: An Introduction to Generalized Linear Models, Chapman and
Hall, London, 1990. a
Duncan, J. M. A., Dash, J., and Atkinson, P. M.: Elucidating the impact of
temperature variability and extremes on cereal croplands through remote
sensing, Glob. Change Biol., 21, 1541–1551, https://doi.org/10.1111/gcb.12660,
2015. a
Furrer, E. M., Katz, R. W., Walter, M. D., and Furrer, R.: Statistical
modeling
of hot spells and heat waves, Clim. Res., 43, 191–205,
https://doi.org/10.3354/cr00924, 2010. a, b, c
Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E.,
Benestad, R.,
Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S., Martín, D. S., Herrera,
S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M.,
Dubrovsky, M., Ribalaygua, J., Pórtoles, J., Räty, O., Räisänen, J.,
Hingray, B., Raynaud, D., Casado, M. J., Ramos, P., Zerenner, T., Turco, M.,
Bosshard, T., Štěpánek, P., Bartholy, J., Pongracz, R., Keller, D. E.,
Fischer, A. M., Cardoso, R. M., Soares, P. M. M., Czernecki, B., and Pagé,
C.: An intercomparison of a large ensemble of statistical downscaling methods
over Europe: Results from the VALUE perfect predictor cross-validation
experiment, Int. J. Climatol., https://doi.org/10.1002/joc.5462, online first, 2018. a
Hansen, B. B., Isaksen, K., Benestad, R. E., Kohler, J., Pedersen,
A. Ø., Loe, L. E., Coulson, S. J., Larsen,
J. O., and Varpe, Ø.: Warmer and wetter winters:
characteristics and implications of an extreme weather event in the High
Arctic, Environ. Res. Lett., 9, 114021,
https://doi.org/10.1088/1748-9326/9/11/114021, 2014. a
Hatfield, J. L. and Prueger, J. H.: Temperature extremes: Effect on plant
growth and development, Weather and Climate Extremes, 10, 4–10,
https://doi.org/10.1016/j.wace.2015.08.001, 2015. a
Iizumi, T. and Ramankutty, N.: How do weather and climate influence cropping
area and intensity?, Glob. Food Secur.-Agr., 4, 46–50,
https://doi.org/10.1016/j.gfs.2014.11.003,
2015. a
Kahneman, D.: Thinking, Fast and Slow, Penguin, London, 2012. a
Katz, R. W. and Brown, B. G.: Extreme events in a changing climate:
Variability is more important than averages, Climatic Change, 21, 289–302,
https://doi.org/10.1007/BF00139728, 1992. a
Keellings, D. and Waylen, P.: Increased risk of heat waves in Florida:
Characterizing changes in bivariate heat wave risk using extreme value
analysis, Appl. Geogr., 46, 90–97, https://doi.org/10.1016/j.apgeog.2013.11.008,
2014. a, b
Klein Tank, A. J. B. W., Konnen, G. P., Böhm, R., Demarée, G.,
Gocheva, A.,
Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R.,
Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S.,
Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M.,
Leitass, A., Bukantis, A., Aberfeld, R., Engelen, A. F. V. v., Forland, E.,
Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T.,
López, J. A., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A.,
Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of
20th-century surface air temperature and precipitation series for the
European Climate Assessment, Int. J. Climatol., 22,
1441–1453, 2002. a, b
Koehler, A.-K., Challinor, A. J., Hawkins, E., and Asseng, S.: Influences of
increasing temperature on Indian wheat: quantifying limits to predictability,
Environ. Res. Lett., 8, 034016, https://doi.org/10.1088/1748-9326/8/3/034016, 2013. a
Krishnan, M., Nguyen, H. T., and Burke, J. J.: Heat shock protein synthesis
and
thermal tolerance in wheat, Plant Physiol., 90, 140–145, 1989. a
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M.:
Unraveling the Mystery of Indian Monsoon Failure During El
Nino, Science, 314, 115–119, https://doi.org/10.1126/science.1131152,
2006. a
Lana, X., Martínez, M. D., Burgueño, A., Serra, C., Martín-Vide,
J., and
Gómez, L.: Spatial and temporal patterns of dry spell lengths in the
Iberian Peninsula for the second half of the twentieth century,
Theor. Appl. Climatol., 91, 99–116,
https://doi.org/10.1007/s00704-007-0300-x, 2008. a, b
Lobell, D., Sibley, A., and Ortiz-Monasterio, J.: Extreme heat effects on
wheat
senescence in India, Nature Climate Change, 2, 186–189, https://doi.org/10.1038/nclimate1356, 2012a. a
Lobell, D. B., Sibley, A., and Ivan Ortiz-Monasterio, J.: Extreme heat
effects
on wheat senescence in India, Nature Climate Change, 2, 186–189,
https://doi.org/10.1038/nclimate1356,
2012b. a, b
Luo, Q.: Temperature thresholds and crop production: a review, Climatic
Change,
109, 583–598, 2011a. a
Luo, Q.: Temperature thresholds and crop production: a review, Temperature
thresholds and crop production: a review, Climatic Change, 109, 583–598,
https://doi.org/10.1007/s10584-011-0028-6,
2011b. a
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V.
K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010. a
McCullagh, P. and Nelder, J.: Generalized Linear Models, Chapman and
Hall,
London, 1989. a
McMaster, G. S., White, J. W., Hunt, L. A., Jamieson, P. D., Dhillon, S. S.,
and Ortiz-Monasterio, J. I.: Simulating the Influence of Vernalization,
Photoperiod and Optimum Temperature on Wheat Developmental Rates,
Simulating the Influence of Vernalization, Photoperiod and Optimum
Temperature on Wheat Developmental Rates, Ann. Bot., 102, 561–569,
https://doi.org/10.1093/aob/mcn115, 2008. a
Mearns, L. O., Katz, R. W., and Schneider, S. H.: Extreme
High-Temperature
Events: Changes in their probabilities with Changes in Mean
Temperature, J. Clim. Appl. Meteorol., 23, 1601–1613,
https://doi.org/10.1175/1520-0450(1984)023<1601:EHTECI>2.0.CO;2, 1984. a
Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L., and Whetton,
P.:
Trends in Extreme Weather and Climate Events: Issues Related to
Modeling Extremes in Projections of Future Climate Change,
B. Am. Meteorol. Soc., 81, 427–436,
https://doi.org/10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2, 2000. a
Menne, M. J., Durre, I., Korzeniewski, B., McNeill, S., Thomas, K., Yin, X.,
Anthony, S., Ray, R., Vose, R. S., Gleason, B. E., and Houston, T. G.: Global
Historical Climatology Network – Daily (GHCN-Daily), Version 3,
NOAA National Climatic Data Center, 2012a. a
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An
Overview of the Global Historical Climatology Network-Daily
Database, J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/JTECH-D-11-00103.1, 2012b. a
Mishra, S. C., Singh, S. K., Patil, R., Bhusal, N., Malik, A., and Sareen,
S.:
Breeding for heat tolerance in Wheat, in: WHEAT: Recent Trends on
Production Strategies of Wheat in India, edited by: Shukla, R. S.,
Mishra, P. C., Chatrath, R., Gupta, R. K., Tomar, S. S., and Sharma, I.,
15–29, DWR, Karnal, 2014. a
Neumann, J. and Kington, J.: Great Historical Events That Were
Significantly Affected by the Weather: Part 10, Crop Failure in
Britain in 1799 and 1800 and the British Decision to Send a Naval
Force to the Baltic Early in 1801, B. Am.
Meteorol. Soc., 73, 187–199,
https://doi.org/10.1175/1520-0477(1992)073<0187:GHETWS>2.0.CO;2, 1992. a
Nychka, D.: LatticeKrig: A multi-resolution spatial model for large
data.,
in: Spatial Statistics for Environmental and Energy Challenges –
Workshop 2014, Thuwal, Saudi Arabia, 2014. a
Porter, J. R. and Gawith, M.: Temperatures and the growth and development of
wheat: a review, Eur. J. Agron., 10, 23–36, 1999. a, b
Rao, B. B., Chowdary, P. S., Sandeep, V., Pramod, V., and Rao, V.: Spatial
analysis of the sensitivity of wheat yields to temperature in India,
Spatial analysis of the sensitivity of wheat yields to temperature in
India, Agr. Forest Meteorol.,
200, 192–202, https://doi.org/10.1016/j.agrformet.2014.09.023, 2015. a, b, c
R Core Team: R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014. a
Saini, H. and Aspinall, D.: Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature, Ann. Bot., 49,
835–846, 1982. a, b
Saxena, D. C., Prasad, S. V. S., Parashar, R., and Rathi, I.: Phenotypic
characterization of specific adaptive physiological traits for heat tolerance
in wheat, Phenotypic characterization of specific adaptive physiological
traits for heat tolerance in wheat, Indian J. Plant Physi., 21, 318–322,
https://doi.org/10.1007/s40502-016-0241-4, 2016. a
Schubert, S.: Downscaling local extreme temperature change in south-eastern
Australia from the CSIRO MARK2 GCM, Int. J.
Climatol., 18, 1419–1438, 1998. a
Sharma, S., Sharma, R., and Chaudhary, H.: Vernalization response of winter x
spring wheat derived doubled-haploids, Vernalization response of winter x
spring wheat derived doubled-haploids, Afr. J. Agr. Res., 7, 6465–6473,
https://doi.org/10.5897/AJAR12.2114, 2012. a
Simmons, A. and Gibson, J.: The ERA-40 Project Plan, ERA-40 Project
Report Series 1, ECMWF, available at: https://www.ecmwf.int/ (last access: 23 April 2018), 2000. a
Sivakumar, M. V. K.: Empirical Analysis of Dry Spells for
Agricultural
Applications in West Africa, J. Climate, 5, 532–539,
https://doi.org/10.1175/1520-0442(1992)005<0532:EAODSF>2.0.CO;2, 1992. a
Storch, H. v., Zorita, E., and Cubasch, U.: Downscaling of Global Climate
Change Estimates to Regional Scales: An Application to Iberian
Rainfall in Wintertime, J. Climate, 6, 1161–1171, 1993.
a
Tashiro, T. and Wardlaw, I.: The response to high temperature shock and
humidity changes prior to and during the early stages of grain development in
wheat, Funct. Plant Biol., 17, 551–561, 1990. a, b
Tiwari, V., Mamrutha, H. M., Sareen, S., Sheoran, S., Tiwari, R., Sharma, P.,
Singh, C., Singh, G., and Rane, J.: Managing Abiotic Stresses in Wheat,
in: Abiotic Stress
Management for Resilient Agriculture, edited by: Minhas, P., Rane, J., and Pasala, R., 313–337, Springer,
Singapore, https://doi.org/10.1007/978-981-10-5744-1_14,
2017. a
Wang, W., Zhou, W., Li, Y., Wang, X., and Wang, D.: Statistical modeling and
CMIP5 simulations of hot spell changes in China, Clim. Dynam., 44,
2859–2872, https://doi.org/10.1007/s00382-014-2287-1,
2015. a, b, c
Wilby, R. and Wigley, T.: Downscaling General Circulation Model output:
a
review of methods and limitations, Prog. Phys. Geogr., 21,
530–548, 1997. a
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic
Press, Orlando, Florida, USA, 1995. a, b
Xue, G.-P., Sadat, S., Drenth, J., and McIntyre, C. L.: The heat shock factor
family from Triticum aestivum in response to heat and other major abiotic
stresses and their role in regulation of heat shock protein genes, J.
Exp. Bot., 65, 539–557, 2013. a