Articles | Volume 3, issue 2
https://doi.org/10.5194/ascmo-3-93-2017
https://doi.org/10.5194/ascmo-3-93-2017
26 Oct 2017
 | 26 Oct 2017

Probabilistic evaluation of competing climate models

Amy Braverman, Snigdhansu Chatterjee, Megan Heyman, and Noel Cressie

Related authors

National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023,https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
WOMBAT v1.0: a fully Bayesian global flux-inversion framework
Andrew Zammit-Mangion, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew Rigby, Yi Cao, and Noel Cressie
Geosci. Model Dev., 15, 45–73, https://doi.org/10.5194/gmd-15-45-2022,https://doi.org/10.5194/gmd-15-45-2022, 2022
Short summary
Analysis of variability of tropical Pacific sea surface temperatures
Georgina Davies and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 155–169, https://doi.org/10.5194/ascmo-2-155-2016,https://doi.org/10.5194/ascmo-2-155-2016, 2016
Short summary
Instability and change detection in exponential families and generalized linear models, with a study of Atlantic tropical storms
Y. Lu and S. Chatterjee
Nonlin. Processes Geophys., 21, 1133–1143, https://doi.org/10.5194/npg-21-1133-2014,https://doi.org/10.5194/npg-21-1133-2014, 2014
Short summary
Logit-normal mixed model for Indian monsoon precipitation
L. R. Dietz and S. Chatterjee
Nonlin. Processes Geophys., 21, 939–953, https://doi.org/10.5194/npg-21-939-2014,https://doi.org/10.5194/npg-21-939-2014, 2014

Related subject area

Statistics
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary
Statistical modeling of the space–time relation between wind and significant wave height
Said Obakrim, Pierre Ailliot, Valérie Monbet, and Nicolas Raillard
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 67–81, https://doi.org/10.5194/ascmo-9-67-2023,https://doi.org/10.5194/ascmo-9-67-2023, 2023
Short summary
Modeling general circulation model bias via a combination of localized regression and quantile mapping methods
Benjamin James Washington, Lynne Seymour, and Thomas L. Mote
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 1–28, https://doi.org/10.5194/ascmo-9-1-2023,https://doi.org/10.5194/ascmo-9-1-2023, 2023
Short summary

Cited articles

Annan, J. and Hargeaves, J.: Reliability of the CMIP3 ensemble, Geophys. Res. Lett., 37, L02703, https://doi.org/10.1029/2009GL041994, 2010.
Baumberger, C., Knutti, R., and Hadorn, G.: Building confidence in climate model projections: an analysis of inferences from fit, in: WIREs Climate Change, edited by: Zorita, E. and Hulme, M., WIREs, 8, e454, https://doi.org/10.1002/wcc.454, 2017.
Boe, J. and Terray, L.: Can metric-based approaches really improve multi-model climate projections? The case of summer temperature change in France, Clim. Dynam., 45, 1913–1928, https://doi.org/10.1007/s00382-014-2445-5, 2015.
Brockwell, P. J. and Davis, R. A.: Time Series: Theory and Methods, Springer, 520 pp., 1991.
Covey, C., AchutaRao, K., Cubasch, U., Jones, P., Lambert, S., Mann, M., Phillips, T., and Taylor, K.: An overview of the results of the Coupled Model Intercomparison Project (CMIP), Global Planet. Change, 37, 103–133, 2003.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
In this paper, we introduce a method for expressing the agreement between climate model output time series and time series of observational data as a probability value. Our metric is an estimate of the probability that one would obtain two time series as similar as the ones under consideration, if the climate model and the observed series actually shared the same underlying climate signal.