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Abstract. We assess similarities and differences between model effects for the North American Regional Cli-
mate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression mod-
els. Specifically, we consider how the average temperature effect differs for the various global and regional
climate model combinations, including assessment of possible interaction between the effects of global and re-
gional climate models. We use both pointwise and simultaneous inference procedures to identify regions where
global and regional climate model effects differ. We also show conclusively that results from pointwise inference
are misleading, and that accounting for multiple comparisons is important for making proper inference.

1 Introduction

The behavior of future climate is of great interest because
of its potential impacts on health, finance, government, and
many other arenas. Three main sources of uncertainty in fu-
ture climate prediction are frequently identified: the natural
variability of the climate system, the trajectories and levels of
emissions (e.g., greenhouse gases, aerosols) that impact cli-
mate, and how the global climate system will respond to any
given set of future emissions (Meehl, 2007; Mearns et al.,
2009, 2012).

One of the ways that these uncertainties have been ex-
plored is via large-scale atmosphere–ocean general circula-
tion models (GCMs). These models seek to understand the
relationship between various environmental factors and use
the modeled dynamics to generate various responses at cer-
tain times in the future. The responses obtained from GCMs
are observed over fairly coarse grids (≈ 150–200 km spa-
tial resolution; Sain et al., 2011). While GCMs may accu-
rately model the climate behavior of a region, because of
their coarse nature they may not be suitable for understand-
ing climate behavior on a more local scale. Consequently, lo-
cal inference and decision making is made difficult because

locations in each grid cell can actually have very different
local climate systems. In response to this difficulty, regional
climate models (RCMs) have been used to make predictions
on a much finer scale (≈ 50 km spatial resolution; Mearns
et al., 2009). The coarse-scale GCMs are used to provide the
environmental conditions at the boundary of the study area
for the RCMs, and then the RCMs are used to dynamically
downscale and model climate behavior within the study area
on a finer scale.

Every GCM and RCM has a different approach to mod-
eling emission dynamics and the relationship between emis-
sions and the resulting climate. Because of the differences in
the models (and the stochastic nature of data generation), a
natural question of interest is, “After accounting for typical
climate variability, is there convincing evidence that the av-
erage climates produced by the models are truly different?
And if they are, then where are these differences located ge-
ographically?” These questions can be asked with regard to
pairs of GCMs, pairs of RCMs with the same driving GCM,
or interactions between various combinations of RCMs and
GCMs. Statistical inference performed by French and Sain
(2013) on temperature data from the North American Re-
gional Climate Change Assessment Program (NARCCAP;
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Mearns et al., 2009) suggests that many of the climate mod-
els produce similar results, though the interaction between
GCMs and RCMs may be significant. This inference was
limited by the facts that it was made for individual subre-
gions of North America (not taking into account all available
data at each time) and that it operated on 10-year averages
instead of using a finer timescale.

Our goals are twofold: (1) to estimate the main effects of
the GCMs, the RCMs, and also their possible interaction ef-
fects and (2) to determine where the pairwise differences in
main effects and the interaction effects differ significantly
from zero. Similar goals were pursued by Kaufman and Sain
(2010) and Sain et al. (2011) using an approach called Func-
tional Analysis of Variance (FANOVA). The basic idea of
FANOVA is to assume that the effects of each factor vary
continuously over the spatial domain, so that each effect is
actually a spatial surface or function. After estimating the ef-
fects functions, an appropriate statistical testing procedure is
used to identify locations where a linear combination of the
effects functions has a certain property (e.g., it differs from
zero). This testing procedure is typically done pointwise on
a grid. Kaufman and Sain (2010) used a Bayesian FANOVA
to estimate GCM and RCM main effects, interaction effects,
and temperature gradient over time for climate models that
are producing temperature data for parts of Europe. Sain
et al. (2011) applied a Bayesian FANOVA to estimate and
compare effects related to two methods for downscaling cli-
mate behavior over North America. We apply ideas similar
to FANOVA to our present context. We treat the effects as
being continuous surfaces over the spatial domain, though
we do not explicitly model them as such using basis expan-
sions or similar tools common in functional data analysis.
This affords us greater flexibility in the estimation process,
while also providing computational benefits. We will com-
pare the effects in a standard frequentist framework for sta-
tistical inference, though we correct the testing procedure to
make valid simultaneous inference over the spatial domain,
as described below.

Our goal of determining where effects or effect differences
are significant is part of the broader problem of spatial sig-
nal detection, which is referred to as field significance in the
atmospheric sciences (Wilks, 2011). A basic method for do-
ing this would be to simply determine where an effect dif-
fers significantly from zero on a point-by-point basis. This
is an approach common in climate science due to its sim-
plicity and speed (e.g., see Deser et al., 2012), but the infer-
ence is weakened by the fact that the familywise error rate
(FWER) is not controlled by this approach. Consequently,
one is likely to conclude an effect is significant far more fre-
quently than is appropriate. A better approach is to explic-
itly account for the problem of multiple comparisons and the
spatial correlation between tests. The traditional Bonferroni
correction for controlling the FWER is far too conservative
when many tests are done. A popular approach to simultane-
ous inference in spatial signal detection has been to develop

procedures controlling the false discovery rate (FDR) popu-
larized by Benjamini and Hochberg (1995). While the origi-
nal method only applied to independent tests, various FDR-
controlling procedures developed in the context of random
fields and autocorrelation have been proposed (Shen et al.,
2002; Benjamini and Heller, 2007; Sun et al., 2015). These
procedures are generally more powerful for simultaneous in-
ference than FWER-controlling techniques. The significant
regions produced by a level-α FDR-controlling procedure
are constructed so that 100α% of the significant region is
expected to actually be null. Consequently, one cannot con-
fidently assert exactly which locations are significant. Re-
cently, several FWER-controlling methods for spatial signal
detection have been proposed by French and Sain (2013),
French (2014), Bolin and Lindgren (2015), and French and
Hoeting (2016). These approaches vary in complexity and
computational efficiency, but all require the random field un-
der consideration to be Gaussian. In contrast, Sommerfeld
et al. (2015) recently proposed a new approach for address-
ing this problem based on constructing Coverage Probability
Excursion (CoPE) sets when the data are repeated noisy ob-
servations on a fine grid of fixed locations. The confidence
sets are constructed using the multiplier bootstrap method,
which requires only mild assumptions about the data struc-
ture while also making the method very fast to apply. The
method does not require the observed random fields to be
Gaussian, nor does it require stationarity or differentiability
of the random field. We describe the CoPE method in more
detail below, and compare it to pointwise testing of hypothe-
ses.

Utilizing the recently developed CoPE methodology of
Sommerfeld et al. (2015), one can objectively assess whether
the difference in average temperature effects for different cli-
mate models varies across large spatial domains over long
periods of time. In contrast to assessing these differences
pointwise at each location, the CoPE method properly ad-
justs for the simultaneous inference problem caused by per-
forming many tests across the spatial domain. Additionally,
the two inferential methods have different interpretations.
For both methods, we intend to determine the spatial region
where an effect is nonzero. This region is constructed by us-
ing a statistical test at each location to find the set of loca-
tions where we can conclude there is nonzero effect. Let us
call the set of locations where we conclude there is nonzero
effect the rejection region. When using pointwise inference
at level α, this should result in a fraction α of the region
where there is truly no effect to be included in the rejection
region. Since the area of the zero effect region is unknown, it
is unclear what proportion of the rejection region is incorrect.
However, the CoPE method at confidence level 1-α produces
two nested spatial regions (called upper and lower for pos-
itive and negative values, respectively) such that there is a
probability of 1-α that the true zero-effect region is nested
in between the upper and lower regions. The rejection region
is then the complement of the set nested between the upper
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NARCCAP domain Study area

Figure 1. The shading (dark and light) indicates the NARCCAP
study area. The light shading indicates the continental United States
locations analyzed in Sect. 4. The black lines indicate relevant na-
tional borders.

and lower region. The rejection region produced by the CoPE
method should be comprised entirely of truly nonzero-effect
locations with probability 1-α.

In what follows, we compare the average effects of various
combinations of climate models, with the goal of identifying
locations where the average effect is statistically different for
the RCMs, the GCMs, and any interaction effect of RCM–
GCM combinations. Sect. 2 describes the data set that we an-
alyze; Sect. 3 describes the statistical models and the method-
ology we employ to compare the average effect of the various
climate models and discusses the applicable model assump-
tions. We provide results from both the pointwise and CoPE
analysis in Sect. 4 and summarize our conclusions in Sect. 5.
Appendix A provides several plots displaying the size differ-
ences of the rejection regions produced by the pointwise and
CoPE methods.

2 The NARCCAP data

The spatial domain of the NARCCAP includes the lower
48 states of the United States, northern Mexico, much of
Canada, and the portions of the Atlantic and Pacific oceans
that border these landmasses. A plot of the spatial domain is
provided in Fig. 1.

The program has two primary phases, but our analysis fo-
cuses on data produced in the second phase, in which four
GCMs were used to provide boundary conditions under the
A2 SRES emission scenario (IPCC, 2000) for 30 years of
“current” climate (1971–2000) and 30 years of future climate
(2041–2070). Six different RCMs were used to downscale

climate data on a much finer scale onto the NARCCAP do-
main using the boundary conditions provided by the GCMs.
Summary information for the various GCMs and RCMs is
provided in Table 1.

As stated by Mearns et al. (2012), these RCMs, “. . . were
chosen to provide a variety of model physics and/or to
use models that have already performed multiyear climate
change experiments, preferably in a transient mode.” A
full factorial design could not be run due to funding con-
straints, so a balanced fractional factorial design was uti-
lized to sample half of the 24 possible treatment combina-
tions. The experimental design allows for pooling of infor-
mation across relevant factor combinations, potentially im-
proving statistical inference. In the NARCCAP experimental
design, each GCM provides boundary conditions for three
different RCMs, and each RCM is nested in two GCMs. The
various GCM–RCM combinations run in the experiment are
indicated by “X” in Table 2.

Our analysis focuses on the average maximum daily sur-
face air temperature (tasmax) during the summer (June–
August), measured in degrees Kelvin (◦K). The NARCCAP
RCMs use different grids, so we used the Earth System Mod-
eling Framework software (Hill et al., 2004) to interpolate the
data onto a common 0.5◦× 0.5◦ latitude–longitude grid (in-
dicated by shading in Fig. 1), using a variant of patch recov-
ery interpolation (Khoei and Gharehbaghi, 2007; Gu et al.,
2004). Smoothing is a concern when interpolating data to
higher resolution. However, in this case, we are interpolat-
ing the data from the native 50 km grids to a 0.5◦ common
grid, which has approximately the same resolution, espe-
cially over the continental United States. The patch interpo-
lation method we used generally produces better approxima-
tions of values and derivatives when compared to the stan-
dard bilinear interpolation method (National Center for At-
mospheric Research, 2017) (one of the reasons we chose this
method), so the smoothness of the field is approximately the
same before and after regridding.

Climate model outputs typically exhibit bias compared
to observations. Because an analysis of this type would
primarily pick up the bias rather than the climate change
signal when applied to raw model output, we have bias-
corrected the data. We used kernel density distribution map-
ping (KDDM, McGinnis et al., 2015) to correct the data; this
technique adjusts the values of individual data points at a
given location so that their statistical distribution within a
moving window matches that of an observational data set,
in this case the gridded daily data set of Maurer et al. (2007).
KDDM is a form of quantile mapping. Teutschbein and Seib-
ert (2012) show that quantile mapping is the approach to bias
correction that has the best overall performance, and McGin-
nis et al. (2015) show that KDDM is the best-performing im-
plementation of quantile mapping. The spatial coverage of
the bias-corrected data is thus limited to that of the obser-
vational data, which is indicated by light shading in Fig. 1.
In what follows we focus on analyzing the bias-corrected
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Table 1. Summary information for the GCMs and RCMs used in the second phase of the NARCCAP climate model experiment.

Type Name Acronym References

GCM Canadian Climate Centre CGCM3 CGCM3 Flato et al. (2000); Scinocca and Mc-
Farlane (2004)

GCM GFDL AOGCM, CM2.1 GFDL GFDL GAMDT (The GFDL Global
Atmospheric Model Development
Team)

GCM Hadley Centre HadCM3 HadCM3 Gordon et al. (2000); Pope et al. (2000)
GCM NCAR CCSM3 CCSM Collins et al. (2006)
RCM Canadian Regional Climate Model CRCM Caya and Laprise (1999)
RCM Scripps Experimental Climate Prediction Center Re-

gional Spectral Model
ECP2 Juang et al. (1997)

RCM Hadley Centre’s regional climate model version 3 HRM3 Jones et al. (2004)
RCM Pennsylvania State University and National Center for

Atmospheric Research Mesoscale Model, generation 5
MM5I Grell et al. (1993)

RCM Regional Climate Model, version 3 RCM3 Giorgi et al. (1993a, b)
RCM Weather Research and Forecasting model WRFG Skamarock et al. (2005)

Table 2. The various GCM–RCM combinations considered in the
NARCCAP are indicated by “X”. This table is ordered so as to high-
light the two 2× 2 mini-experiments (lower left and upper right.)

GCM
CGCM3 CCSM GFDL HadCM3

RCM

ECP2 X X
HRM3 X X
MM5I X X
RCM3 X X
WRFG X X
CRCM X X

future-period model outputs for the years 2041–2070. The
future data are chosen because we are interested in finding
the similarities and differences between the climate projec-
tions in the future, as opposed to how those projections have
modeled the past. Additionally, in the bias-corrected data,
the future scenarios for different models can be compared
directly, without the need to subtract the “current” period cli-
mate data (for the years 1971–2000).

3 Methods

As mentioned in the Introduction, our goals are (1) to esti-
mate the main effects of the GCMs, the RCMs, and also their
possible interaction effects, and (2) to determine whether the
pairwise differences in main effects and the interaction ef-
fects differ significantly from zero. We will estimate these
effects using ANOVA regression models fit across the spa-
tial domain, then use the CoPE method (Sommerfeld et al.,
2015) to make valid simultaneous inference for the effects
over the spatial domain. We describe these topics in more
detail below.

3.1 Classes of models and effects of interest

We analyze simulated summer average tasmax measure-
ments on a 0.5◦ grid for a sequence of 30 years, downscaled
from one of four GCMs by one of six RCMs. We let t =
1,2, . . .,30 denote the year (1 is year 2041, 2 is year 2042,
and so on), i = 1,2,3,4 denote the GCM driving the simu-
lation (1=CGCM3, 2=CCSM, 3=GFDL, 4=HadCM3),
and j = 1,2, . . .,6 denote the RCM performing the dy-
namical downscaling (1=CRCM, 2=ECP2, 3=HRM3,
4=MM5I, 5=RCM3, 6=WRFG). We desire to partition
the variation in the response into (i) variation explained by
the GCM driving the simulation, (ii) variation explained by
the RCM, and (iii) a residual component, and we also aim
to quantify variation related to an interaction between the
RCM and GCM. We allow the mean response to vary lin-
early across years, also allowing for possible changes in this
trend effect because of the GCM, RCM, and interaction. The
functional nature of these effects implies that they vary spa-
tially with location. To account for this, and because it is eas-
ily facilitated by the gridded nature of the data, we estimate
the effects in each grid cell independently of other grid cells
(as previously done by Sommerfeld et al., 2015). Doing so
has the important consequence of allowing us (as in Som-
merfeld et al., 2015) to avoid making a stationarity assump-
tion about the spatial noise process. Spatial pooling, which
would require us to assume stationarity, is not actually nec-
essary given that the estimated effects vary fairly smoothly
across the spatial domain. Note that because the NARCCAP
employs only a fractional factorial design for the experi-
mental factors, the interaction effect can only be estimated
for two 2× 2 mini-experiments. Mini-experiment 1 involves
the CGCM3 and CCSM GCMs and the WRFG and CRCM
RCMs. Mini-experiment 2 involves the GFDL and HadCM3
GCMs and the ECP2 and HRM3 RCMs.
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Figure 2. Heat maps of the estimated regression coefficients for the ASL models fitted to the mini-experiment 1 data. The parameter being
estimated is indicated above each plot (cf. Eq. 3). This figure demonstrates the continuity of the estimated coefficients across space, as
required by Assumption A1.

We now describe four different classes of regression mod-
els we considered. Let Yij t (s) denote the response at a loca-
tion s for year t , driven by GCM i and downscaled by RCM
j .

3.1.1 APL – additive parallel-line model:

In this model, we assume that the GCM and RCM effects are
additive and, practically speaking, only affect the intercept of
the linear trend. This model can be formally described as

Yij t (s)= µ(s)+α(s)t +βi(s)+ γj (s)+ εij t (s), (1)

where µ(s) is the average temperature at time t = 0 at loca-
tion s, α(s) is the baseline average rate of temperature change
per year at location s, βi(s) is the change in the average tem-
perature related to GCM i at location s, γj (s) is the change
in the average temperature related to RCM j at location s,
and εij t (s) is the residual variation of each response from the
mean. The resulting mean functions for each GCM–RCM
combination at a particular location will be linear and par-
allel to one another as a function of time.

3.1.2 IPL – interaction parallel-line model:

This model is similar to the APL model, but allows for the
potential of an interaction effect between the RCM and GCM
that affects the average temperature at location s equally
across time. The only additional term in the model is the in-
teraction term. This model can be formally described as

Yij t (s)= µ(s)+α(s)t +βi(s)+ γj (s)+ δij (s)+ εij t (s), (2)

where δij (s) denotes the change in the average temperature at
location s related to the interaction between GCM i and RCM
j . This model is only fit for the 2×2 mini-experiments men-
tioned above, when this interaction term can be estimated.

3.1.3 ASL – additive separate-line model:

In this model, we assume that the GCM and RCM effects
are additive, but can affect both the intercept and slope of the
linear mean function. We add two new parameters, multiplied
by the time t , to the APL model in Eq. (1). This model can
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be formally described as

Yij t (s)= µ(s)+α(s)t +βi(s)+ γj (s)+ ζi(s)t + ηj (s)t
+ εij t (s), (3)

where ζi(s) denotes the change in the average rate of tem-
perature change per year at location s related to GCM i, and
ηj (s) denotes the change in the average rate of temperature
change per year at location s related to RCM j .

3.1.4 ISL – interaction separate-line model:

The last model we consider extends both the IPL and ASL
models in Eqs. (2) and (3), respectively, to allow for the pos-
sibility of interaction effects in both the intercept and slope
of the mean function. This model can be formally described
as

Yij t (s)= µ(s)+α(s)t +βi(s)+ γj (s)+ δij (s)
+ ζi(s)t + ηj (s)t + θij (s)t + εij t (s), (4)

where θij (s) denotes the change in the average rate of temper-
ature change per year at location s related to the interaction
between GCM i and RCM j .

A summary of the various models’ fits, as well as the inter-
pretation of the associated parameters, is provided in Table 3.

In the next section, we discuss the specific kinds of effects
for which we desire to make inference and how to perform
the analysis so that the inference is valid across all spatial
locations simultaneously.

3.2 Effects of interest and global inference

As is common in ANOVA-based analyses, we are interested
in assessing the effect of different factors on the average re-
sponse in relation to one other. In our specific context, we
seek to assess how different GCMs and RCMs affect the av-
erage temperature at every location s. To generalize the dis-
cussion, let κ(s) denote the effect of interest that we would
like to estimate, where the exact parametric form of κ(s) de-
pends on the effect of interest. For example, if we were in-
terested in assessing whether there was a difference between
the effect of GCM 1 and 2 on average temperature (assuming
other factors and time were the same) for the APL model in
Eq. (1), then κ(s)= β1(s)−β2(s). Similarly, if we were inter-
ested in assessing whether the effect of RCM 2 and 3 on aver-
age temperature differed for the APL model (assuming other
factors and time were the same), then κ(s)= γ2(s)− γ3(s).
However, we may be interested in assessing whether there is
evidence of interaction in the effect of GCM 1 and RCM 1
on average temperature, assuming other factors are the same,
for the IPL model in Eq. (2). In that case, the estimated ef-
fect of interest would be κ(s)= δ11(s). As a final example,
suppose we were interested in assessing whether there was
a difference in the average rate of temperature change (i.e.,

slope) for RCM 5 and 6 for the ASL model in Eq. (3), as-
suming that other factors and time were the same. In that
context κ(s)= η5(s)−η6(s). Other effects of interest are pos-
sible for the additive and interaction slope effects described
in the ASL and ISL models in Eqs. (3) and (4), respectively.

Our main goal is to identify locations in the spatial do-
main where an effect of interest, κ(s), differs from zero. In
the examples of the previous paragraph, this would indicate
that there is in fact a difference in the effect of two factors
on mean temperature, e.g., that there is a difference in the
average temperature of data produced by RCMs 1 and 2, as-
suming other variables are the same.

An inferential solution to finding where the effects differ is
to find the set of locations where we can confidently conclude
that κ(s) 6= 0. A basic method for doing this would be to
simply determine where κ(s) differs significantly from zero
on a point-by-point basis. In other words, a hypothesis test
at each location would be performed to determined whether
κ(s) 6= 0. This is an approach common in climate science due
to its simplicity and speed (e.g., see Deser et al., 2012), but
the inference is weakened by the fact that the familywise er-
ror rate is not controlled by this approach. Consequently, one
is likely to conclude κ(s) 6= 0 far more frequently than is ap-
propriate. A better approach is to explicitly account for the
problem of multiple comparisons and the spatial correlation
between tests. Various methods have recently been proposed
for this by French and Sain (2013), French (2014), Bolin and
Lindgren (2015), and French and Hoeting (2016). These ap-
proaches vary in complexity and computational efficiency,
but all require the random field under consideration to be
Gaussian. Sommerfeld et al. (2015) recently proposed a new
approach for addressing this problem based on constructing
CoPE sets when the data are repeated noisy observations
on a fine grid of fixed locations. The confidence sets are
constructed using the multiplier bootstrap method, requiring
only mild assumptions about the data structure while making
the method very fast to apply. Specifically, the method does
not require the observed random fields to be Gaussian, nor
does it require stationarity or differentiability of the random
field. However, it does require that the parameter estimates in
the ANOVA models are approximately Gaussian (satisfying
a central limit theorem) and are continuous over space. Ad-
ditionally, if V(s) denotes the covariance matrix of the errors
ε(s) at location s, then the transformed errors V−1/2(s)ε(s)
should be independent across time. We applied this method
to confidently determine the sets where κ(s) 6= 0, construct-
ing these confidence sets at the 0.90 level. In Sect. 4, we com-
pare results for where the effects of interest differ from zero
using both the pointwise and CoPE methods.

3.3 Methods for assessing assumptions and
model selection

An important aspect of any model fitting process is ascer-
taining whether the assumptions made regarding the data-
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Table 3. A summary of the regression model classes considered, as well as the interpretation of the various model effects.

Model abbreviation Form

APL Yij t (s)= µ(s)+α(s)t +βi (s)+ γj (s)+ εij t
IPL Yij t (s)= µ(s)+α(s)t +βi (s)+ γj (s)+ δij (s)+ εij t (s)
ASL Yij t (s)= µ(s)+α(s)t +βi (s)+ γj (s)+ ζi (s)t + ηj (s)t + εij t (s)
ISL Yij t (s)= µ(s)+α(s)t +βi (s)+ γj (s)+ δij (s)+ ζi (s)t + ηj (s)t + θij (s)t + εij t (s)

Effect Interpretation

µ(s) The average temperature at time t = 0 at location s
α(s) The (baseline) average rate of temperature change per year at location s
βi (s) The change in the average temperature related to GCM i at location s
γj (s) The change in the average temperature related to RCM j at location s
δij (s) The change in the average temperature at location s related to the interaction between GCM i and RCM j

ζi (s) The change in the average rate of temperature change per year at location s related to GCM i

ηj (s) The change in the average rate of temperature change per year at location s related to RCM j

θij (s) The change in the average rate of temperature change per year at location s related to the interaction between
GCM i and RCM j
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Figure 3. Plots of estimated densities for the transformed residuals from randomly selected locations from each fitted model. The title above
each plot indicates the model from which the residuals were taken, with the “1” or “2” indicating the data were fitted to mini-experiments
1 or 2, respectively. This figure demonstrates the near-Gaussian character of the transformed residuals, implying the estimated regression
coefficients are approximately Gaussian, as required by Assumption A2.

generating process are satisfied. As previously noted, the
CoPE method requires that the following assumptions apply:

A1 The estimated regression coefficients are continuous
across space.

A2 The estimated regression coefficients are approximately
Gaussian.

A3 The transformed errors at each location are independent
across time.

Having assumed relatively little about the data-generating
process, and because we have not explicitly modeled the ef-
fects as continuous (by using a basis expansion or something
similar to model the effects over space), Assumption A1 is
not something that can be analytically confirmed. However,

diagnostic tools can still be used to verify that this assump-
tion is reasonable. For example, heat maps of the estimated
regression coefficients over space for data observed on a spa-
tial grid should look smooth enough that the estimated coeffi-
cient fields can be treated as continuous at the given grid res-
olution. Alternatively, one might consider a variogram cloud
of the estimated coefficients as a function of distance be-
tween grid cell centroids. While this is likely to be quite
noisy, the semivariances should approach zero as the distance
between grid cells approaches zero. We opt for the former
approach in what follows.

Assumption A2 is valid if the errors at each location, ε(s),
are Gaussian. Alternatively, because the estimated regression
coefficients are linear combinations of the errors (via the ob-
served responses), the central limit theorem implies that the
estimated coefficients will be have an approximately Gaus-
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Figure 4. Empirical CDFs of the p values from the Ljung–Box test
of independence of the transformed residuals (across all locations)
for each GCM–RCM combination, separated by the model fit. The
black line is the CDF of a standard uniform distribution. This fig-
ure demonstrates the temporal independence of transformed errors
required by Assumption A3.

sian sampling distribution if the number of sampled times
is large enough (Weisberg, 2014, Sect. 2.3). Since we do
not need the errors to come from a Gaussian distribution,
we do not utilize a formal test to assess whether the data
are Gaussian. Instead, as long as the transformed residuals
appear to be approximately symmetric and bell-shaped, the
central limit theorem will imply that the sampling distribu-
tion of the estimated regression coefficients will approach a
Gaussian distribution. Consequently, we assess the validity
of this assumption graphically using density plots. Specifi-
cally, we look at density plots of the transformed residuals,
V−1/2(s)ε̂(s), and compare them to the density of a Gaus-
sian distribution. As long as the densities of the transformed
residuals are approximately similar to the Gaussian density,
this assumption is satisfied. Due to the large number of loca-
tions, it is not feasible to perform this check for all locations.

(a) All data (b) Mini−experiment 1 (c) Mini−experiment 2

APL ASL IPL ISL

Figure 5. Model preference at each location based on AIC statis-
tics. The coloring indicates which model is preferred for (a) all data,
(b) mini-experiment 1 data, and (c) mini-experiment 2 data.

Consequently, we will perform this check for a random sam-
ple of locations for each fitted model.

Assumption A3 can be assessed using Ljung–Box tests
(Ljung and Box, 1978). The Ljung–Box test assesses whether
the first ` autocorrelations in a time series differ signifi-
cantly from what is expected by a white-noise process. Fol-
lowing the recommendation of Hyndman and Athanasopou-
los (2013, Sect. 2.6), we tested the autocorrelations for the
first `= 10 lags. Since at each location there are 12 time
series (1 for each of the 12 model combinations), we ap-
plied a Ljung–Box test separately to each of the 12 time
series. Not including grid locations with no data, this re-
sults in 40 044 tests for all model combinations and 13 348
each for mini-experiments 1 and 2. Instead of utilizing a
multiple-comparison correction (e.g., Bonferroni or Holm;
Holm, 1979), which is likely to be overly conservative, we
took advantage of the fact that p values from hypothesis tests
with a true null hypothesis follow a standard uniform dis-
tribution (Murdoch et al., 2008). Consequently, the empiri-
cal cumulative distribution function (CDF) of the p values
should approximately follow the CDF of a standard uniform
distribution. We note that this approach would be most appro-
priate for tests that are independent of one another. Although
there is clearly spatial autocorrelation among the p values we
observe, we did not account for it. Alternatively, one could
estimate the proportion of tests for which the null hypoth-
esis is true, i.e., the transformed residuals are independent.
Storey and Tibshirani (2003) proposed a method for doing
this based on smoothing, and we utilize this method in esti-
mating the proportion of true null hypotheses for each GCM–
RCM combination.

A related but separate issue in our analysis is choosing the
model (i.e., the set of factors) to be used in the regression.
As stated in Sect. 3.1, we fit four classes of linear regres-
sion model to the measurements at each site. Consequently,
comparison of the models becomes important for the inter-
pretation of results. To compare models across locations, we
calculated the Akaike information criterion (AIC; Akaike,
1974) for each of the four models at each location. Since
the conclusion from the AIC comparisons can differ by loca-
tion, we summarize the results using a heat map that indicates
which model is preferred based on the smaller AIC value.
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Figure 6. A heat map of the estimated average pairwise differences in RCM effect for the APL model. Only significant locations at the 0.10
level using pointwise inference are shown.

3.4 Additional model fitting details

We do not assume that the errors at each location, ε(s), are in-
dependent and identically distributed. In fact, preliminary ex-
ploration of the residuals at each location revealed errors that
were possibly correlated (which is why we formally tested
for correlated errors in Sect. 4) and that the error variance
may be slightly different for different GCM–RCM combina-
tions (though constant across time for a specific GCM–RCM
combination). Consequently, we had to use a more complex
covariance estimation process for the errors. The ideal ap-
proach would be to estimate the covariance matrix of the
errors at the same time as the regression coefficients, but
due to the complexity of the covariance matrix, this proved
computationally intractable. Instead, we adopted a two-stage
process for estimating the covariance matrix for the errors
at each location. First, we fit the models in Eqs. (1)–(4) to
the data at each location using ordinary least-squares regres-

sion. We extracted the residuals from each fit, and then fit an
AR(p) covariance model to the residuals from each GCM–
RCM combination (described in more detail in Appendix B).
We then concatenated estimated covariance matrices for the
GCM–RCM combinations into a block-diagonal covariance
matrix, modeling the errors from each GCM–RCM combina-
tion as independent of the errors from any other combination.
We then used this complete estimated covariance matrix,
V̂(s), to perform a generalized least-squares estimation of
the regression coefficients for each regression model (treat-
ing the estimated covariance matrix as if it were the known,
true covariance matrix V(s)), transform the residuals for as-
sumption assessment, implement the CoPE method, and so
on. We note that other covariance structures (e.g., a general
common covariance across years for each GCM–RCM com-
bination, a general common covariance across years for each
RCM) were considered in our analysis, but either subsequent
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Figure 7. A heat map of the estimated average pairwise differences in RCM effect for the APL model. Only significant locations at the 0.10
level using the CoPE method are shown.

diagnostics showed that they did not adequately capture the
dependence structure of the errors or they proved computa-
tionally infeasible.

4 Results from the NARCCAP data

4.1 Evaluation of assumptions and comparison
of models

We begin by assessing the assumptions necessary to apply
the CoPE method of constructing confidence regions. We fit
all four regression models (APL, IPL, ASL, ISL) described in
Sect. 3.1 to the temperature data available (3336 locations).
As previously mentioned, we could only fit the IPL and ISL
models to data from mini-experiments 1 and 2. In order to
use the AIC for model comparison between the APL, ASL,
IPL, and ISL models, we also fit the APL and ASL models to

data exclusively from mini-experiments 1 and 2 (in addition
to the complete data sets).

We begin by assessing assumption A1: that is, whether
the estimated regression coefficients are continuous across
space. We plotted estimated regression coefficients across
space using a heat map in order to discern whether the nec-
essary spatial structure was evident in the plots. A represen-
tative plot is shown in Fig. 2 for the ASL model applied to
the data from mini-experiment 1. The estimated coefficients
appear to vary smoothly, and no obvious discontinuities are
visible. We observed similar patterns for the estimated coef-
ficients of the other models.

Next, we assess assumption A2: that is, whether it is rea-
sonable to treat the estimated regression coefficients from the
models as being values sampled from a Gaussian distribu-
tion. This assumption is immediately satisfied if the errors of
the data from which the parameters are estimated are sam-
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Figure 8. A heat map of the estimated average pairwise difference in GCM effect for the APL model. Only significant locations at the 0.10
level using pointwise inference are shown.

pled from a Gaussian distribution. To assess this assump-
tion, we obtained the transformed residuals from randomly
selected locations from each fitted model. We estimated and
plotted density curves from each set of residuals, as shown
in Fig. 3. The title above each plot indicates the model from
which the residuals were obtained, with the “1” or “2” af-
ter a model indicating that the model was fitted to the data
from mini-experiment 1 or 2, respectively. The densities are
all fairly symmetric and bell-shaped; so, combined with the
central limit theorem, the assumption that the estimated co-
efficients follow a Gaussian distribution seems a reasonable
one. Note that we do not need to use a formal test for Gaus-
sianity of the errors because the CoPE method does not re-
quire Gaussianity of the errors. Instead, the data only need to
be sufficiently regular that the central limit theorem applies
and the estimated coefficients are approximately Gaussian.

We now consider assumption A3: that is, that the trans-
formed residuals from the fitted model appear to be indepen-
dent across time. Specifically, after estimating the covariance
matrix V(s) at each location using the procedure described
in Sect. 3.4 and fitting the desired regression model, the
residuals at each location were determined, then multiplied
by V̂−1/2(s) to obtain the transformed residuals. We applied

Ljung–Box tests to the set of transformed residuals from each
fitted model at each location for every GCM–RCM combina-
tion. We then estimated the empirical CDF of the p values for
each set of transformed residuals. Figure 4 shows the results
for each combination of GCM and RCM, with different col-
ors indicating the different model fits. The black line in each
plot indicates the CDF of a standard uniform distribution. An
empirical CDF rising above the black line is evidence of a
possible problem with the independence assumption for that
particular GCM–RCM combination. Nearly all of the empiri-
cal CDFs fall below the black line, with the only clear excep-
tion being the empirical CDFs of the CGCM3 GCM. To fur-
ther assess the potential for problems with the independence
assumption, we estimated the proportion of null hypotheses
(i.e., the proportion of tests where the transformed residuals
were compatible with a sample of independent observations)
using the p values from the Ljung-Box text and using the ap-
proach suggested by Storey and Tibshirani (2003). Table 4
provides the estimated proportion of null hypotheses for the
GCM–RCM combinations of each regression model. The es-
timated proportion falls below 1.00 for only three estimates,
and these estimates are 0.93, 0.95, and 0.95. This provides
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Figure 9. A heat map of the estimated average pairwise difference in GCM effect for the APL model. Only significant locations at the 0.10
level using the CoPE method are shown.

Figure 10. A heat map of the estimated average interaction effect for the IPL model. Only significant locations at the 0.10 level using
pointwise inference are shown.

additional support that there is little concern that substantive
serial dependence remains in the transformed residuals.

If the transformed residuals violate the independence as-
sumption for a specific GCM–RCM combination, spatial
confidence regions for no effect (κ = 0) involving that com-
bination may suffer from undercoverage, meaning the confi-
dence regions are smaller than they should be. Consequently,
rejection regions indicating an effect or difference in effect
will include more area than they should. Heat maps of sig-

nificant differences involving GCM–RCM combinations that
violate assumption A3 may indicate areas of significant dif-
ference when no difference is present.

Lastly, we compare the fitted models using the AIC statis-
tics calculated at each location. Figure 5 displays the pre-
ferred regression model across the spatial domain based on
each model’s AIC statistic. Figure 5a indicates that the APL
model is preferred in much of the central and eastern United
States as well as the Pacific coastline, while the ASL is pre-

Adv. Stat. Clim. Meteorol. Oceanogr., 3, 67–92, 2017 www.adv-stat-clim-meteorol-oceanogr.net/3/67/2017/



J. P. French et al.: Contrasting the NARCCAP climate models 79

Figure 11. A heat map of the estimated average interaction effect for the IPL model. Only significant locations at the 0.10 level using the
CoPE method are shown.

Figure 12. A heat map of the estimated average pairwise difference in rate of temperature change for RCM effects for the ASL model. Only
significant locations at the 0.10 level using pointwise inference are shown.
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Figure 13. A heat map of the estimated average pairwise difference in rate of temperature change for RCM effects for the ASL model. Only
significant locations at the 0.10 level using the CoPE method are shown.

Table 4. The proportion of estimated null hypotheses in the Ljung–Box test of independence for the transformed residuals.

APL APL1 APL2 IPL1 IPL2 ASL ASL1 ASL2 ISL1 ISL2

CCSM–CRCM 1.00 1.00 1.00 1.00 1.00 0.93
CCSM–MM5I 1.00 1.00
CCSM–WRFG 1.00 1.00 1.00 1.00 1.00 1.00
CGCM3–CRCM 1.00 1.00 1.00 1.00 1.00 1.00
CGCM3–RCM3 1.00 1.00
CGCM3–WRFG 1.00 1.00 1.00 1.00 1.00 1.00
GFDL–ECP2 1.00 1.00 1.00 1.00 1.00 1.00
GFDL–HRM3 1.00 1.00 1.00 1.00 1.00 1.00
GFDL–RCM3 1.00 1.00
HadCM3–ECP2 1.00 1.00 1.00 1.00 0.98 0.95
HadCM3–HRM3 1.00 1.00 1.00 1.00 1.00 1.00
HadCM3–MM5I 1.00 1.00
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Figure 14. A heat map of the estimated average pairwise difference in rate of temperature change for GCM effects for the ASL model. Only
significant locations at the 0.10 level using pointwise inference are shown.

ferred near the Sierra Nevada and Rocky Mountains and
along some of the Atlantic coastline. Figure 5b indicates
that for the mini-experiment 1 data, the simple APL model
is generally preferred over other models across most of the
United States, with preference for the IPL model in the east-
ern United States. Lastly, Fig. 5c indicates that for the mini-
experiment 2 data, the IPL and ISL models are preferred over
most of the United States, with the APL and ASL models be-
ing preferred in the southwestern United States. In summary,
no clear preference can be given to either the APL or ASL
models fitted to the complete data. For the data from mini-
experiment 1, the APL model generally seems preferable to
either the IPL or ISL models, and for mini-experiment 2, the
IPL and ISL models are generally preferred over the APL or
ASL models.

We cannot specifically state why certain models are pre-
ferred in some regions over others. However, the temperature
behavior varies regionally, so a more complex model may
be beneficial in certain regions for modeling the behavior of
the data. For the purpose of making simultaneous inference
about the effects, we must consider only one class of regres-
sion model at a time. Consequently, we will make inference
and look at the resulting interpretation for each individual
class of regression model.

4.2 Comparison of effects

We now provide the results from inference related to the ef-
fects of the various models. We provide results for pointwise
inference at each location (no multiple-comparison correc-
tion) and from applying the CoPE method. All inference is
made at a 0.10 significance level since we had no grounds
for a stronger level of Type I error control. The units of all
estimated effects is in degrees Celsius.

We begin with inference related to the APL model. First,
we determine the locations where the RCM effects signifi-
cantly differ from each other. More specifically, we are es-
timating κ(s)= γk(s)− γl(s) for all possible values of k and
l (with k and l denoting the differing RCMs) for the APL
model specified in Eq. (1) and determining where this pa-
rameter differs from zero. The plots in Figs. 6 and 7 show
the results using pointwise inference and the CoPE method,
respectively. Only locations where this parameter is signifi-
cantly different from zero are shown (this is true of subse-
quent heat maps also). The title above each plot indicates the
pairwise difference being estimated.

The significant regions are noticeably smaller for the
CoPE method, with the interpretation that the region where
the effect is nonzero is bounded between the red and blue
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Figure 15. A heat map of the estimated average pairwise difference in rate of temperature change for GCM effects for the ASL model. Only
significant locations at the 0.10 level using the CoPE method are shown.

regions with probability 0.9. The HRM3 and CRCM RCMs
are associated with higher warming across the spatial domain
in comparison with the other RCMs. In contrast, the ECP2
and MM5I RCMs are associated with a significantly lower
warming effect over much of the United States in compar-
ison with the other RCMs. We can formalize this ordering
of the models in terms of their overall contribution to the
warming signal by integrating the estimated parameter value
over the confidence regions and using it as a metric for rank-
ing. (Equivalently, we sum over the spatial domain and the
columns in each figure to calculate the ranking metric.) These
rankings are summarized in Table 5.

We next determine the locations where the GCM effects
significantly differ from each other. Formally, we are esti-
mating κ(s)= βk(s)−βl(s) for all possible values of k and
l (corresponding to the GCMs) for the APL model speci-
fied in Eq. (1). The estimated pairwise differences in GCM
effects for the APL models are shown for pointwise infer-
ence in Fig. 8 and for the CoPE method in Fig. 9. Using
the rank-ordering described above, we can see that CCSM
and GFDL GCMs contribute the most to the warming signal,
while CGCM3 has the smallest relative contribution.

We next assess whether there is a significant interaction
effect between the RCMs and the GCMs for the IPL model.

More specifically, we are assessing whether δij (s) for the IPL
in Eq. (2) is significantly different from zero for the CCSM–
WRFG GCM–RCM combination for mini-experiment 1 and
the HadCM3–HRM3 combination for mini-experiment 2. A
plot of the interaction effect is shown in Fig. 10 for pointwise
inference and in Fig. 11 for the CoPE method. There is some
evidence of interaction between RCM and GCM using the
data available in mini-experiments 1 and 2. Specifically, the
CCSM–WRFG model combination shows an additional re-
duction in warming effect in some regions, and an enhanced
warming effect in others, when compared to the main effects
of the WRFG and CCSM climate models, respectively. Con-
versely, the HadCM3–HRM3 model combination tends to es-
timate overall more reduced warming than what is suggested
by considering the main effects of HRM3 and HadCM3 mod-
els alone.

We next proceed to the analysis of the ASL models. For
this class of models, we focus on whether there are differ-
ences in the rate of temperature change simulated by the cli-
mate models. We consider the pairwise differences in the ef-
fect on the rate of temperature change for the RCMs and then
the GCMs. Specifically, we assess whether ηk(s)− ηl(s) dif-
fers from zero for the RCM effects and ζk(s)− ζl(s) differs
from zero for the GCM effects, where k and l vary over all
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Table 5. Relative overall ordering of model contribution to different components of the warming signal, ordered from highest (top of table)
to lowest (bottom of table). The metric used for ordering the models is the integrated estimated parameter value of the pointwise confidence
regions. The units for the total warming metric are ◦C× km2

× 106 and the units for the warming rate metric are ◦C× km2
× 106 year−1.

Total warming Warming rate
RCM GCM RCM GCM

Model Metric Model Metric Model Metric Model Metric

HRM3 8.91 GFDL 1.95 MM5I 0.168 GFDL 0.0613
CRCM 6.14 CCSM 1.35 CRCM 0.0595 HadCM3 0.0365
RCM3 1.96 HadCM3 −0.791 HRM3 0.0284 CCSM −0.0297
WRFG −3.82 CGCM3 −2.51 RCM3 0.00606 CGCM3 −0.0681
MM5I −6.47 WRFG −0.0347
ECP2 −6.73 ECP2 −0.227

Table 6. The order of the autoregressive model fit to the residuals of each regression model for each GCM–RCM combination.

APL APL1 APL2 IPL1 IPL2 ASL ASL1 ASL2 ISL1 ISL2

CCSM–CRCM 2 2 2 2 2 2
CCSM–MM5I 0 0
CCSM–WRFG 1 1 1 1 1 1
CGCM3–CRCM 0 0 0 0 0 0
CGCM3–RCM3 1 1
CGCM3–WRFG 0 0 0 0 0 0
GFDL–ECP2 2 2 2 4 4 2
GFDL–HRM3 0 0 0 1 1 1
GFDL–RCM3 0 0
HadCM3–ECP2 0 0 0 1 1 1
HadCM3–HRM3 1 1 1 1 1 1
HadCM3–MM5I 1 1

possible combinations of the RCMs and GCMs, respectively.
The results for the RCMs are shown in Figs. 12 and 13, and
the results for the GCMs are shown in Figs. 14 and 15. Most
notably, the regions of significance from the pointwise in-
ference are dramatically larger than those found using the
CoPE method. Considering the results for the CoPE analy-
sis, most RCMs do not show significantly different rates of
warming. The ECP2 model has a slower rate of warming than
the other RCMs in several areas near the mountainous parts
of the western US, while the MM5I RCM shows evidence
of faster warming compared to the other RCMs in various
patches of the US. However, most of these regions are fairly
small, with the exception that the ECP2 and MM5I models
differ significantly in much of the Midwestern states. There is
little significant difference in rates of warming between the
GCMs except in some coastal areas, particularly along the
Gulf of Mexico, where CGCM3 warms more slowly than the
other GCMs. Once again, the significant regions from point-
wise inference are dramatically larger than those from the
CoPE method.

Lastly, we consider whether there is an interaction effect
in the rate of temperature change for the ISL models. In
particular, we are assessing whether θij (s) significantly dif-

fers from zero for the ISL model in Eq. (4) for the CCSM–
WRFG GCM–RCM combination for mini-experiment 1 and
the HadCM3–HRM3 combination for mini-experiment 2.
There is no evidence of an interaction effect in the rate of
temperature change for mini-experiment 1 using either point-
wise inference or the CoPE method. For mini-experiment
2, performing pointwise inference suggests a small interac-
tion effect in the rate of temperature change in a few small
regions for the HadCM3–HRM3 combination, primarily in
Florida and Georgia (not shown). Similarly, for the CoPE
method there is only a single location (out of 3336 loca-
tions) that is significant. These results are surprising in light
of the AIC statistics shown in Fig. 5. Specifically, for the
mini-experiment 1 AIC results shown in Fig. 5b, the APL
and IPL models (which do not have an interaction effect
in the rate of temperature change) were almost universally
preferred over the ISL model (which allowed for an inter-
action effect in the rate of temperature change). However,
for the mini-experiment 2 AIC results shown in Fig. 5c, the
ISL model was preferred over the IPL model in the locations
where the significant interaction effect in rate of temperature
change was detected.
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5 Discussion

We have utilized four classes of ANOVA-related regression
models to compare the effects of the RCMs and GCMs used
by the NARCCAP on average summer temperature. The
APL model assumes an additive effect for the RCMs and
GCMs, but assumes the rate of temperature change is con-
stant for all combinations of models. The IPL model assumes
that the average temperature at a location can depend on an
interaction between RCMs and GCMs, but the rate of tem-
perature change is constant. The ASL model assumes that the
effects of the RCMs and GCMs on the average temperature
and on the rate of temperature change are additive. Lastly, the
ISL model assumes that the effects of the RCMs and GCMs
on the average temperature and on the rate of temperature
change can interact.

No one model was preferred over the others, though
the APL model tended to be preferred for the data from
mini-experiment 1, while the IPL and ISL models tended
to be preferred for the data from mini-experiment 2. Fig-
ures 6–15 show the locations where effects differ signifi-
cantly from zero. This analysis also allows us to rank the
RCMs and GCMs in terms of their relative contribution to
the warming signal. These rankings are summarized in Ta-
ble 5. There is convincing evidence that the interaction be-
tween the HadCM3 GCM and the HRM3 RCM produces a
lower temperature increase than would be suggested by the
GCM and RCM individually over a significant portion of the
simulation domain. In general, there was little evidence that
the RCMs or GCMs differed in their effect on the rate of
temperature change. The main exception appears in limited
regions when comparing ECP2, which has the lowest con-
tribution to warming, with HRM3 and MM5I, which have
the highest contributions to overall warming and to rate of
warming, respectively. There was almost no evidence of an
interaction effect between the RCMs and GCMs on the rate
of temperature change.

Due to budgetary constraints, NARCCAP used a fractional
factorial experimental design that exercised only half of its
24 possible RCM–GCM combinations. The evidence of a
significant interaction effect in certain RCM–GCM combi-
nations highlights the value of carefully constructed experi-
mental designs that explore complete factorial combinations
whenever feasible, the substantial limitations of cost inher-
ent to climate model experiments of this magnitude notwith-
standing.

We performed inference on the significance of the model
effects using both pointwise inference and the CoPE method
(Sommerfeld et al., 2015). Pointwise inference does not
make any adjustments for multiple comparisons and is de-
signed to control the per-comparison error rate, while the
CoPE method is designed to control the familywise error
rate. As expected, pointwise inference resulted in signifi-
cant effects being detected at more locations than the CoPE
method: on the one hand, at level α = 0.10, pointwise infer-
ence produces an expected false positive area equal to 10 %
of the area of study with no effect, which is quite large; on
the other hand, the CoPE method produces regions that are
significantly different from zero with overall probability of
1−α = 0.9. Sometimes, the difference in the number of sig-
nificant locations was dramatic, as is evidenced in Figs. 6–
15. Additional figures illustrating the size difference of the
regions produced by the pointwise and CoPE methods are
provided in Fig. A1–A5 of the appendix. The CoPE method
is a useful method for analyzing climate model effects while
ensuring the familywise error rate is appropriately controlled.

Code availability. The CoPE method utilized in this manuscript
is implemented in the cope R package (Sommerfeld and French,
2017). Computer code for all analysis and plots for this research
have been provided in the Supplement.

Data availability. The bias-corrected NARCCAP data analyzed in
this manuscript have been provided in the Supplement.
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Appendix A

Figure A1. A comparison of the nonzero-effect regions of the average pairwise difference for RCM effects of the APL model using both
pointwise and CoPE methods. The grey coloring indicates significant locations at the 0.10 level for both methods, while the orange coloring
indicates that the effect is significant for pointwise inference alone.
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Figure A2. A comparison of the nonzero-effect regions of the average pairwise difference for GCM effects of the APL model using both
pointwise and CoPE methods. The grey coloring indicates significant locations at the 0.10 level for both methods, while the orange coloring
indicates that the effect is significant for pointwise inference alone.
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Figure A3. A comparison of the nonzero-effect regions of the average pairwise difference in rate of temperature change for RCM effects of
the ASL model using both pointwise and CoPE methods. The grey coloring indicates significant locations at the 0.10 level for both methods,
while the orange coloring indicates that the effect is significant for pointwise inference alone.
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Figure A4. A comparison of the nonzero-effect regions of the average pairwise difference in rate of temperature change for GCM effects of
the ASL model using both pointwise and CoPE methods. The grey coloring indicates significant locations at the 0.10 level for both methods,
while the orange coloring indicates that the effect is significant for pointwise inference alone.

Figure A5. A comparison of the nonzero-effect regions of the average interaction effect of the IPL model using both pointwise and CoPE
methods. The grey coloring indicates significant locations at the 0.10 level for both methods, while the orange coloring indicates that the
effect is significant for pointwise inference alone.
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Appendix B: Detailed discussion of covariance
estimation

We now describe the estimation process for V(s) in more de-
tail. Exploratory data analysis showed evidence that serial
autocorrelation was present for the time series of at least
some of the GCM–RCM combinations. Additionally, data
exploration suggested that the scale of the errors may change
slightly depending on the GCM–RCM combination, though
the scale of the errors did not appear to change as a func-
tion of time. The size of the data set (up to 358 observations
at over 3000 locations) precluded us from estimating the co-
variance structure for all locations simultaneously, especially
since the dependence structure was not necessarily the same
for all GCM–RCM combinations, so the estimation of V(s)
was done independently for each location s.

The errors from each GCM–RCM combination were mod-
eled as being independent of errors from a different GCM–
RCM combination, with each set of errors modeled using a
distinct AR(pij ) process, where pij is the order of the au-
toregressive process for GCM i and RCM j . Let I = {(i,j )}
be the set of GCM–RCM combinations available in the data
for a specific regression model. Then

V(s)= diag{Vij (s); (i,j ) ∈ I}, (B1)

i.e., V(s) is the block diagonal of smaller covariance matri-
ces Vij (s), where Vij (s) denotes the covariance matrix of the
errors for GCM–RCM combination (i,j ) at location s. The
Vij (s) are constructed as

Vij (s) := cov(Yij t1 (s),Yij t2 (s))t1,t2∈{1,2,...,30} = σ
2
ijφij,|t1−t2|,

where |t1− t2| is the time lag between times t1 and t2, σ 2
ij

is the covariance scaling parameter for GCM–RCM combi-
nation (i,j ), and φij,t is the correlation between responses
having the same GCM–RCM level and separated in time by
a lag of t . Note that because the covariance scaling parame-
ter, σ 2

ij , was estimated separately for each GCM–RCM com-
bination, this allowed us to account for possible differences
in the scale of the errors for each GCM–RCM combination.
The parameters of each AR(pij ) error process were esti-
mated using restricted maximum likelihood estimation under
the assumption of Gaussian errors. The autoregressive order
for GCM–RCM combination (i,j ), pij , was chosen indepen-
dently for each regression model and GCM–RCM combina-
tion after considering the correlation structure of the residu-
als. Table 6 summarizes the order of the autoregressive model
fit to the residuals of each regression model for each GCM–
RCM combination.

After the set of estimated covariances matrices
{V̂ij (s); (i,j ) ∈ I} were obtained, they were concate-
nated after the pattern of Eq. (B1) to obtain the complete
estimated covariance matrix, V̂(s). Note that because the
mean structure changes for each regression model, V(s) had
to be estimated separately in the context of each regression
model. Specifically, the V̂(s) used in analyzing data for the
APL regression model was estimated specifically for that
model, while separate estimates were obtained for the IPL,
ASL, and ISL models, respectively.

We now summarize the covariance estimation process de-
scribed above in a more algorithmic way. The steps listed
below are performed separately for the APL, IPL, ASL, and
ISL models. For each location s:

1. Fit the specified regression model (APL, IPL, ASL, or
ISL) to the responses at the location using ordinary
least-squares estimation.

2. Compute the residuals using the fitted model.

3. Separate the residuals into twelve groups based on their
associated GCM–RCM combination.

4. Fit an AR(p) model to the residuals from each group
using the order p specified in Table 6.

5. Construct the estimated covariance matrix for the resid-
uals of each group using the fitted AR(p) model.

6. Construct the estimated covariance matrix for the com-
plete set of residuals by stacking the estimated co-
variance matrices for each group into a single block-
diagonal matrix.
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The Supplement related to this article is available online
at https://doi.org/10.5194/ascmo-3-67-2017-supplement.
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