Autoregressive spatially varying coefficients model for predicting daily PM$_{2.5}$ using VIIRS satellite AOT

E. M. Schliep1, A. E. Gelfand2, and D. M. Holland3

1Department of Statistics, University of Missouri, Columbia, Missouri, USA
2Department of Statistical Science, Duke University, Durham, North Carolina, USA
3National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA

Correspondence to: E. M. Schliep (schliepe@missouri.edu)

Received: 16 July 2015 – Revised: 24 November 2015 – Accepted: 1 December 2015 – Published: 16 December 2015

Abstract. There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM$_{2.5}$, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM$_{2.5}$ spatial patterns beyond what we can predict from current PM$_{2.5}$ monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM$_{2.5}$. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM$_{2.5}$. The models are applied to daily observations of PM$_{2.5}$ and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.

1 Introduction

Particulate matter (PM) in the atmosphere poses a dangerous public health risk worldwide with effects ranging from reduced vision to respiratory and cardiovascular problems (e.g., US Environmental Protection Agency, 2004; Pope III and Dockery, 2006; Miller et al., 2007; Valavanidis et al., 2008). It has been estimated that a reduction in PM in metropolitan areas in the United States may increase overall life expectancy by as much as 15% (Pope III et al., 2009). Small PM, such as that with aerodynamic diameters less than 2.5 µg m$^{-3}$ (PM$_{2.5}$), has been shown to have high toxicity (Valavanidis et al., 2008). New air quality regulations for PM$_{2.5}$ were put into effect by the US EPA in 1997. The EPA designated Federal Reference Methods (FRMs) and Federal Equivalent Methods (FEMs) are used to sample and analyze PM$_{2.5}$. In addition, the EPA worked with federal, state, local, and tribal agencies to establish a network of ambient mass monitoring methods nationwide.

Over the past decade, the demand for spatial models to provide estimates of air quality for inputs in human health analyses and to assess advances in air quality has grown rapidly. Due to the spatial sparsity and varying monitoring schedules of fine particulate monitoring stations, several is-
AOT satellite measurements have been shown to be a proxy for surface PM$_{2.5}$ with varying degrees of success. For example, Liu et al. (2005) report a strong potential for satellite remote sensing in air quality monitoring. Conversely, Paciorek and Liu (2009) found limited spatial association between the two data sources at daily, monthly average, and annual average temporal resolutions. They conclude that AOT provided little additional value in a model for monthly PM$_{2.5}$ that already accounts for local emissions, meteorology, land use, and regional variability.

One of the main advantages of estimating ground-level PM$_{2.5}$ using satellite AOT data is that satellites often provide spatial coverage over the entire domain of interest in comparison to the relatively sparse point location monitoring data. We would hope to enhance prediction of PM$_{2.5}$ at remote locations by conditioning on observed AOT. However, there are many challenges to this approach. First, the strength of relationship between the two data sources varies greatly in both time and space primarily due to the vertical structure of AOT. When the concentration of AOT is close to the surface, the correlation between AOT and PM$_{2.5}$ will tend to be high; when the concentration of AOT is higher in the column, the correlation between AOT and PM$_{2.5}$ will be low. Specifically, correlation tends to be strongest on days with low cloud cover, low relative humidity, and good vertical mixing within the atmosphere (Al-Hamdan et al., 2009). Hoff and Christopher (2009) provided a detailed discussion of the theoretical relationship between AOT and PM$_{2.5}$, along with a comprehensive summary of studies.

More recently, researchers have used Light Detection And Ranging (lidar) measurements, an active remote sensing technique, to provide additional insights into the relationship between the vertical-resolved aerosol extinction coefficient and PM$_{2.5}$. The aerosol extinction coefficient provides a range-resolved measure at which pulses of light, from a lidar, are attenuated due to presence (loading) of aerosols in the atmosphere. Toth et al. (2014) showed that aerosol particle distributions tend to be more concentrated near the surface in the eastern contiguous United States and more diffuse vertically in the western contiguous. They report that the near-surface-integrated extinction measured by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) flown aboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is not representative of total column-integrated extinction (AOT) and that the relationship varies spatially. Additionally, they find that near-surface CALIOP extinction is more highly correlated with ground-level PM$_{2.5}$. This suggests that it is necessary to have knowledge of the ratio of near-surface-integrated extinction to column-integrated AOT in order to effectively capture the utility of satellite AOT as a proxy for surface PM$_{2.5}$. Unfortunately, there are fewer than 100 pairs of colocated CALIOP and PM$_{2.5}$ observations. Very recently, localized measures of the vertical structure of aerosols, using a fixed site lidar, showed that the total height of the aerosols, referred to as the haze layer

1see http://www.nsof.class.noaa.gov/notification/pdfs/VIIRSAerosolAOTatsappEDRProvisionalReleaseReadme_Final.docx for statement of maturity.
height, can be used to normalize AOT (Chu et al., 2015). However, these results are very localized in both time and space.

Extensive missing data in both data sources pose a second challenge and missingness is not necessarily missing at random (Kloog et al., 2014). For satellite data, the presence of clouds within a pixel prevents a valid retrieval of AOT and can also impact retrieval of AOT on adjacent pixels due to the scattering from the clouds. As a result, the use of cloud masks and quality control flags to avoid bias in AOT from nearby clouds can result in a high percentage of missing AOT data. Additionally, the data sources are spatially and temporally misaligned. That is, polar-orbiting satellites obtain AOT data only once per day and the observations are the integral of the atmospheric column. The AOT observations are reported on areal grid cells of varying resolution depending on the satellite and processing. By comparison, PM$_{2.5}$ monitoring stations are given at fixed point locations, and allow for various temporal summaries of ground-level PM$_{2.5}$.

Correlation between data sources has been shown to be better, leading to improved out-of-sample prediction, when modeling daily data versus data aggregated to monthly or yearly scales (Paciorek and Liu, 2012). Using satellite and monitoring station data for five southeastern states in the year 2003, Al-Hamdan et al. (2009) found that including meteorological data with remote sensing data in a multiple regression model increases the amount of explained variation in PM$_{2.5}$. Lee et al. (2012) modeled daily PM$_{2.5}$ data from 69 monitoring sites in the northeast for years 2000–2008 using a linear model that regresses PM on 10 km resolution MODIS satellite AOT with a day-specific coefficient for AOT. Out-of-sample prediction is done using the fitted regression model when AOT is observed. When missing, PM$_{2.5}$ is predicted using the daily average observed value for PM$_{2.5}$ along with a location-specific random effect based on a K-means approach.

Kloog et al. (2014) proposed models to predict daily PM$_{2.5}$ at high resolution (1 km × 1 km) across the northeastern United States using the Multi-Angle Implementation of Atmosphere Correction (MAIAC) algorithm. MAIAC is a MODIS satellite data processing algorithm that performs aerosol retrievals and atmospheric correction over both dark vegetated surfaces and bright deserts based on a time series analysis and image-based processing (Lyapustin et al., 2011). Hu et al. (2014) proposed a two-stage model using both MAIAC-Aqua and MAIAC-Terra AOT 1 km resolution data for the southeastern United States in 2003. At the first stage they fitted a multiple linear regression model with day-specific intercept and coefficient for AOT and include land use and meteorological data as covariates. At the second stage they regress the residuals of PM$_{2.5}$ from the first stage onto location-specific intercept and coefficient for AOT that are obtained via a geographical weighting function. Under these multiple-stage models, it is unclear how or if error is propagated through to the final estimates of PM$_{2.5}$. Therefore, uncertainty may be underestimated.

Van Donkelaar et al. (2012) improved upon the prediction of daily ground-level PM$_{2.5}$ using AOT and daily-generated scale factors from the GEOS-Chem chemical transport model. That is, they apply a linearly interpolated simulation ratio of ground-level PM$_{2.5}$ and AOT from GEOS-Chem to the observed MODIS and MISR AOT to get a satellite-driven PM$_{2.5}$ estimate followed by a climatological ground-based regional bias correction factor derived from a comparison with surface-based PM$_{2.5}$ monitoring data. Their model is fitted to data obtained between the years 2004 and 2009 across North America. Model performance is evaluated using R^2 values by day and by region.

Our contribution is to address some of the foregoing modeling challenges in predicting daily PM$_{2.5}$ and apply formal model comparison across competing candidate models. We propose a daily hierarchical autoregressive spatially varying coefficients model to jointly predict, at point level, daily average PM$_{2.5}$ for consecutive days across the contiguous United States, using AOT obtained from VIIRS. The model encompasses several important features. First, due to the high degree of temporal dependence between daily measurements of PM$_{2.5}$, we include an autoregressive term in the model. This was motivated by exploratory data analysis of daily PM$_{2.5}$ observations from 18 June to 9 July 2013. For these 22 consecutive days, we found correlation between PM$_{2.5}$ on adjacent days ranging between 0.52 and 0.91. Second, since correlation between PM$_{2.5}$ and AOT varies both in time and in space depending on the vertical structure of AOT, our model employs a day-specific spatially varying intercept and coefficient for AOT. Third, due to missingness in the daily AOT surfaces, we define our model hierarchically such that there is a model for AOT at the second level. This allows us to implement simultaneous model-based imputation of AOT at missing grid cells through connection to a model for PM$_{2.5}$ defined conditionally on AOT. The hierarchical modeling framework also ensures that we propagate uncertainty in our estimates of AOT to uncertainty in our estimates of PM$_{2.5}$. Lastly, the model includes meteorology data as covariates since variables such as temperature, wind, absolute humidity, and precipitation have strong effects on the concentration of PM$_{2.5}$ and speciated-PM$_{2.5}$ (Dawson et al., 2007). Moreover, meteorology data have been shown to help explain the vertical structure of AOT, and thus, strengthen the relationship between AOT and PM$_{2.5}$ and improve prediction at unobserved locations (Al-Hamdan et al., 2009; Zeeshan and Oanh, 2014; Wang et al., 2013).

For model comparison, we consider competing submodels nested within our model in terms of fit (in-sample) and prediction (out-of-sample) of PM$_{2.5}$. Specifically, we evaluate the predictive benefit of spatially varying coefficients, autoregression, and, perhaps of most interest, AOT. To our knowledge, there is no work in the literature that includes such extensive model comparison over so many days and over such
a large region. Unfortunately, atmospheric numerical model output from the CMAQ\(^2\) was not available for the subject time period of this analysis. Thus, we are unable to offer any comparison of fusion with AOT to fusion with CMAQ as described in, e.g., Berrocal et al. (2012).

The remainder of this paper is structured as follows. In Sect. 2 we describe the PM\(_{2.5}\) and VIIRS satellite-obtained AOT data. In Sect. 3 we define our autoregressive spatially varying coefficients model and methods for obtaining inference in a Bayesian framework. In Sect. 4, the model and three nested submodels are compared based on both model fit and out-of-sample prediction using daily PM\(_{2.5}\) and AOT for 18 June–9 July 2013. We end with a summary and directions of future work in Sect. 5.

2 PM\(_{2.5}\) and AOT data

2.1 Monitoring station PM\(_{2.5}\) data

We obtain PM\(_{2.5}\) data from the Environmental Protection Agency’s (EPA) Air Quality System (AQS) Datamart\(^3\), which is a repository of ambient air quality data. In comparison with the FRM PM\(_{2.5}\) monitoring network\(^4\), the AQS monitoring data provide a larger number and better spatial distribution of daily monitoring sites to use in this evaluation of daily PM\(_{2.5}\) prediction using AOT data. The AQS data consist of continuous, hourly non-FRM PM\(_{2.5}\) observations at 764 unique monitoring sites throughout the conterminous United States to which we convert to daily averages. Monitoring locations tend to be concentrated in areas of high population density (see Fig. 1) leaving large spatial areas with few or no observations. Prediction using just AQS data may rely on observed PM\(_{2.5}\) hundreds of kilometers away. Additionally, there is missingness in observed PM\(_{2.5}\) from these monitoring stations. For the summer months of 2013, between 4 and 8% of monitoring stations are missing observations on a given day.

2.2 VIIRS satellite-obtained aerosol optical thickness

The VIIRS AOT data product used for this study is the validated stage 2 level maturity EDR AOT available at the National Oceanic and Atmospheric (NOAA) Comprehensive Large Array-data Stewardship System (CLASS)\(^5\). VIIRS EDR AOT is produced at a 6 km×6 km resolution at nadir and expands to \(\approx 12.8\) km×12.8 km at the edge of the swath. For additional details on the VIIRS data products, including the EDR AOT, see Jackson et al. (2013). AOT is the degree to which particles (dust, smoke pollution) prevent the transmission of light by absorption or scattering of light. AOT is the vertical integral of the aerosol extinction coefficient, a summary of several different measures of the absorption of light in the entire column of the atmosphere. Therefore, AOT tells us how much direct sunlight is prevented from reaching the ground by these aerosol particles and can be used to infer about air quality. AOT is a dimensionless number typically between 0 and 1 where a value of 0.01 corresponds to an extremely clean atmosphere and a value of 0.4 corresponds to a very hazy condition. On a typical day, average AOT across the United States ranges from 0.10 to 0.15.

The VIIRS satellite orbits the earth roughly once per hour, producing swaths of AOT data for each orbit. The orbit occurs at roughly 14:30 LT during daylight savings time and 13:30 LT during non-daylight savings time. On each day, the conterminous United States is observed by the compilation of three or four orbits of the satellite, depending on the orbiting pattern. As seen in Fig. 2, there is some overlap between consecutive swaths to ensure that all locations on the globe are observed. The daily satellite observations across the United States are aggregated to 6 km grid boxes from 64 0.75 km grid boxes in an \(8 \times 8\) square. The latitude and longitude are given for the center of each of the grid boxes. Each swath is made up of panels with dimension 96 × 400. Unfortunately, these panels and grid boxes change across days. We obtain daily VIIRS satellite data for 22 consecutive days during the summer of 2013 from 18 June to 9 July. For uniformity across days, we aggregate the data to a common 12 km lattice. We average AOT values for grid boxes containing more than one observation.

\(^2\)CMAQ data can be obtained at https://www.camascenter.org/cmaq/.

\(^3\)The EPA’s AQS PM\(_{2.5}\) data can be obtained at https://ofmext.epa.gov/AQDMRS/aqdmrs.html.

\(^4\)FRM PM\(_{2.5}\) data can be obtained at http://www.epa.gov/ttnamti1/pmfrm.html.

\(^5\)The VIIRS aerosol EDRs are available at http://www.nsof.class.noaa.gov.
While polar-orbiting satellites produce one measurement of AOT per day across the entire globe, a large number of areal grid cell observations are flagged and removed through a quality assurance protocol (Jackson et al., 2013). Reasons for removal include poor atmospheric conditions, such as dense clouds, or troubling land surface conditions, such as snow, ice, or sand. The highest quality AOT data have the most missing observations and missingness varies both spatially and temporally. Illustratively, observed AOT across the contiguous United States on 3 July 2013 is shown in Fig. 3 where white indicates missing AOT. Here, AOT was observed at 64% of the grid cells containing one of the 764 monitoring stations. Over the summer months in 2013, the observation rate of AOT at grid cells containing monitoring stations ranges from 45 to 83% on a given day.

Figure 4 shows a scatter plot of PM$_{2.5}$ and AOT on 3 July 2013 where the Spearman’s ρ correlation is 0.47, which was computed using the 522 monitoring station locations that had both PM$_{2.5}$ and AOT observed on that day.

3 An autoregressive spatial varying coefficient model

The model for daily PM$_{2.5}$ is specified on the log-scale, i.e., daily PM$_{2.5}$ is log-transformed. Additionally, AOT is on the square-root scale. Normal Q–Q plots of the log-transformation of PM$_{2.5}$ and square root transformation of AOT are shown for 4 days in the Appendix A1. Both transformations result in slight derivations from normality but the deviations are minimal and the transformations agree with previous work in the literature (e.g., Berrocal et al., 2010 for PM$_{2.5}$, Paciorek and Liu, 2012 for AOD.)

We propose a hierarchical model for PM$_{2.5}$ that incorporates randomness for AOT in order to impute missing satellite data. That is, we do model-based imputation for missing AOT in the context of a conditional model for PM$_{2.5}$ given AOT. Let N denote the fixed number of grid cells in the spatial lattice for AOT. Then, we define the vector of observed AOT on day t as $A_t = \{A_{1,t}, \ldots, A_{n_t,t}\}$, where n_t is the num-
ber grid cells with AOT observations on day t. We model AOT as
\[
A_t = M_t \theta_t + \eta_t, \tag{1}
\]
where θ_t is a vector length N from an intrinsic conditional autoregressive model (IAR) (Besag et al., 1991), M_t is an $n_t \times N$ indicator matrix for the observed AOT grid cells for day t, and η_t is a vector of n_t i.i.d. errors. Therefore, $A_t|\theta_t \sim N(M_t \theta_t, \sigma_t^2 I_n)$ where I_n is a $n_t \times n_t$ identity matrix. The IAR model for θ_t is defined such that
\[
\theta_{t,i}|\theta_{t,-i}, \kappa \sim N \left(\frac{1}{p_i} \sum_{j \sim i} \theta_{t,j}, \frac{1}{p_i} \kappa \right),
\]
where $j \sim i$ denotes that cells j and i are neighbors, κ is a precision parameter and p_i is the number of neighbors for grid cell i. We employ a neighborhood structure on the regular lattice such that neighbors are the adjacent and diagonal grid cells. The neighborhood structure is constant over time.

Let $P_t(s)$ denote the observation of PM$_{2.5}$ at location s on day t. Our most general model for $P_t(s)$ is defined conditional on $A_{t,i}$ where s is in grid cell i. We employ an autoregressive, spatially varying coefficient model for $P_t(s)$. The AR(1) model conditional on AOT for $t = 1, \ldots, T$ is defined as
\[
P_t(s) = \alpha_{0,t} + \beta_{0,t}(s) + (\alpha_{1,t} + \beta_{1,t}(s))A_{t,i} + X_t(s)\gamma + \rho \bar{P}_{t-1}(s) + \epsilon_t(s), \tag{2}
\]
Here, $\alpha_{0,t}$ and $\alpha_{1,t}$ are the global intercept and AOT coefficients for day t, $X_t(s)$ is a vector of location and day-specific meteorological covariates, γ is a vector of coefficients, $\beta_{0,t}(s)$ and $\beta_{1,t}(s)$ are spatially varying intercept and AOT coefficients for day t, and $\epsilon_t(s)$ is i.i.d. (independent and identically distributed) error.

Van Donkelaar et al. (2012) proposed a priori adjustments to AOT that rely on additional sources of computer model output to try to account for the variability in the vertical profile of AOT. Here, the processes $\beta_{0,t}(s)$ and $\beta_{1,t}(s)$ offer a data-driven approach to adjust for the spatiotemporal variability in the relationship between columnar AOT at areal grid cells and ground-level PM$_{2.5}$ concentrations at point locations.

If AOT is missing at grid cell i on day t, it is imputed within the Markov chain Monte Carlo (MCMC) using Eqs. (1) and (2). To initiate Eq. (2) we must specify a model for $P_0(s)$ in order to predict at unobserved locations. Thus, for $t = 0$, we define
\[
P_0(s) = \alpha_{0,0} + \beta_{0,0}(s) + (\alpha_{1,0} + \beta_{1,0}(s))A_{1,0} + X_0(s)\gamma + \epsilon_0(s), \tag{3}
\]
where $\alpha_{0,0}$, $\alpha_{1,0}$, $\beta_{0,0}(s)$, $\beta_{1,0}(s)$, $A_{1,0}$, and $\epsilon_0(s)$ are analogous to above.

The spatial processes, $\beta_{0,t}(s)$ and $\beta_{1,t}(s)$, are defined through a linear model of co-regionalization. That is, for $t = 0, \ldots, T$
\[
\begin{bmatrix}
\beta_{0,t}(s) \\
\beta_{1,t}(s)
\end{bmatrix} =
\begin{bmatrix}
C_{11} & 0 \\
C_{21} & C_{22}
\end{bmatrix}
\begin{bmatrix}
W_{0,t}(s) \\
W_{1,t}(s)
\end{bmatrix},
\]
where $W_{0,t}(s)$ and $W_{1,t}(s)$ are independent mean 0 Gaussian processes with exponential covariance functions and day-specific spatial decay parameters $\phi_{0,t}$ and $\phi_{1,t}$, respectively. The diagonal elements of the lower-triangular co-regionalization matrix, C_{11} and C_{22}, are non-negative.

Lastly, the spatial processes are modeled independently in time as we believe the autoregression will capture the majority of the temporal dependence in the model.

The hierarchical model is fitted within the Bayesian framework, enabling convenient Gibbs sampler loops for imputation. That is, we update the missing AOTs given the parameters and update the parameters given the missing and observed AOTs. We assign prior distributions to all model parameters. When possible, conjugate, non-informative priors are used. For $t = 0, \ldots, T$, $\alpha_{0,t}$ and $\alpha_{1,t}$ are assigned independent normal prior distributions with mean 0 and variance 10$. The conjugate prior distribution for the meteorology coefficient vector γ is MVN(0, 1000I_p), where p is the number of covariates in the model.

The diagonal elements of the C matrix, C_{11} and C_{22}, are assigned independent, diffuse half-normal prior distributions with parameter $\lambda = 0.5$, where the mean is $1/\lambda$ and variance is $(\pi - 2)/2\lambda^2$. The off-diagonal element, C_{21}, is assigned a diffuse mean 0 normal prior with variance 10. These three parameters are updated in a block Metropolis–Hastings step. The day-specific spatial decay parameters, $\phi_{0,t}$ and $\phi_{1,t}$, are assigned uniform prior distributions such that the effective range is less than half the maximum distance. Locations are given in easting and northing coordinates under the Albers conic equal-area projection and distances are computed as Euclidean. The maximum distance between location is 0.8 in Albers standard units. Both error terms, $\eta_{t,i}$ and $\epsilon_t(s)$, are i.i.d. normal random variables with mean 0 and variance parameters σ^2_η and σ^2_ϵ, respectively. The variance parameters σ^2_η and σ^2_ϵ are each assigned IG(2, 2) (inverse-gamma) prior distributions. Lastly, the precision parameter κ is assigned a Gamma(2, 2) prior distribution. These are vague since the priors for σ^2_η, σ^2_ϵ, and $1/\kappa$ have infinite variance.

4 The application

The model is applied to data from 510 monitoring stations located across the conterminous United States that have consecutive daily PM$_{2.5}$ observations from 18 June to 9 July. This region is spanned by $N = 88500$ areal 12 km grid cells of satellite-obtained AOT. The number of grid cells with observed AOT, n_t, ranges from 40 870 to 54 230. Meteorology covariates included in the model are daily average temperature and relative humidity obtained at the monitoring sta-
tions. Additionally, 209 monitoring stations are used for out-of-sample prediction. The number of daily PM$_{2.5}$ observations at these out-of-sample locations ranges from 172 to 203.

We compare our proposed Eq. (2) to three nested submodels, given in detail below. The three submodels are (1) an autoregressive model with daily global intercept and daily spatial-varying coefficients for AOT, (2) a non-autoregressive daily spatially varying coefficients model, and (3) a daily spatial-varying intercept autoregressive model without AOT. We do not consider an autoregressive model with daily spatially varying intercept rather with global daily slope, since we have noted above that there is considerable spatial variability in the association between AOT and PM$_{2.5}$.

Autoregressive model with daily global intercept and daily spatially varying coefficient for AOT

Submodel (S1) is an autoregressive model with only one spatially varying coefficient. Here, the day-specific intercept is global and a spatially varying coefficient for AOT is employed to capture the spatially varying relationship between PM$_{2.5}$ and AOT. The model is written as

$$ P_i(s) = \alpha_{0,i} + (\alpha_{1,i} + \beta_{1,i}(s))A_{i,t} + X_i(s)\gamma + \rho P_{i-1}(s) + \epsilon_i(s). $$

(4)

The model for AOT is the same as in Eq. (1).

Non-autoregressive daily spatially varying coefficients model

Submodel (S2) is non-autoregressive. That is, both intercept and AOT coefficient are spatially varying and day-specific but there is no temporal dynamics for PM$_{2.5}$. The model is written

$$ P_i(s) = \alpha_{0,i} + \beta_{0,i}(s) + (\alpha_{1,i} + \beta_{1,i}(s))A_{i,t} + X_i(s)\gamma + \epsilon_i(s) $$

(5)

and is fitted analogously to the autoregressive model but with $\rho = 0$.

Daily spatially varying intercept autoregressive model without AOT

To assess the significance of AOT in our proposed model, we consider a submodel (S3) without AOT. This model still has a spatial random effect to capture the spatial heterogeneity in PM$_{2.5}$ as well as the autoregressive term. That is,

$$ P_i(s) = \alpha_{0,i} + \beta_{0,i}(s) + X_i(s)\gamma + \rho P_{i-1}(s) + \epsilon_i(s). $$

(6)

where we drop the model for AOT given in Eq. (1).

6The meteorological data are reported by the EPA at the AQS monitoring stations and can be obtained at http://aqsdr1.epa.gov/aqswb/aqstmp/airdata/download_files.html.

Figure 5. Daily MSE for in-sample locations for 18 June–9 July 2013 under the competing models (Eqs. 2–6).

4.1 Model comparison results

We obtain inference for all model parameters in the Bayesian framework using MCMC and a hybrid Metropolis-within-Gibbs algorithm. Additional details regarding the sampling algorithm are included in Appendix A2. Each of the chains is run for 30,000 iterations and the first 10,000 are discarded as burn-in. We computed Monte Carlo standard errors using the batch means procedure (Flegal et al., 2008) to assess convergence of the chains.

We present the results comparing our proposed model (Eq. 2) and the three submodels, (Eqs. 4–6). In-sample mean square error (MSE) by day is given for the four models in Fig. 5. Additionally, Fig. 6 reports the median absolute deviation (MAD) by day for each of the four models where MAD is computed on the original scale of the data (as opposed to log-transformed). The spatial coefficients model (Eq. 2) reports the lowest MSE and MAD across most days while model (Eq. 6) is very similar. Equation (5) reports the highest MSE and MAD across all days.

We predict PM$_{2.5}$ at the unobserved locations for all 22 days by drawing from the joint posterior predictive distribution. Daily R^2 computed using the out-of-sample locations under Eq. (2) ranges from 0.22 to 0.63. Figure 7 gives daily median absolute prediction deviation (MAPD) for the 209 out-of-sample locations for each of the four models. Note that MAPD is computed using only locations in which PM$_{2.5}$ was observed for that given day. We also compare the models based on the continuous rank probability score (CRPS), a strictly proper scoring rule that evaluates the concentration of a predictive distribution for an observation around that observation (Gneiting and Raftery, 2007). Daily average CRPS are given in Fig. 8. In terms of out-of-sample prediction, Eqs. (2)–(6) are nearly indistinguishable. In terms of large spatial scale dynamic prediction, this suggests that there may...
be little benefit in using VIIRS satellite-obtained AOT when predicting PM$_{2.5}$.

4.2 Inference results

Focusing on Eq. (2), we investigate the variability in parameter estimates both temporally and spatially. The day-to-day variability of the global intercept and AOT coefficient terms are shown in Fig. 9. The solid line denotes the posterior mean of the parameter and the dashed lines denote the upper and lower quantities of the 90% credible interval. The estimates of the daily global coefficients of AOT are generally positive indicating that PM$_{2.5}$ is increasing with AOT, conditional on the effects of the meteorology data and the previous day’s PM$_{2.5}$.

Spatial maps of the posterior mean estimates for $\alpha_0 + \beta_0(s)$ and $\alpha_1 + \beta_1(s)$ for 3 consecutive days are shown in Fig. 10.

These processes are capturing the spatial dependence in PM$_{2.5}$ and the spatially varying effect of AOT, respectively, after accounting for the meteorological covariates and autoregression.

There do not appear to be any obvious temporal patterns between consecutive days of either of the spatial processes; this is likely captured by the autoregression. Also, the estimates of $\alpha_1 + \beta_1$ appear uniformly larger on 2 July 2013 than on either the previous or subsequent day.

The proportion of AOT coefficient estimates by day (left) and across space (right) that are significantly different than 0 based on the 90% credible interval are given in Fig. 11. Here, we consider an estimate significantly different from 0 if the 90% credible interval does not include 0. We note that here, significance is determined marginally; we are not doing simultaneous inference. The daily proportion of locations having coefficient estimates that are significantly different than 0 is heavily skewed and is between 0 and 0.84. There is undoubtedly spatial confounding between the spatial processes β_0 and β_1. That is to say, the numerous days with few to no locations having significant AOT coefficients does not mean that the linear effect of AOT on PM$_{2.5}$ is insignificant.

Equation (4) only has one spatial process resulting in the proportion of β_1 estimates that are significantly different from 0 to be much larger (Fig. 12). Therefore, to capture the spatially varying significance of AOT, we compute an adjusted estimate of the AOT coefficient under the proposed spatial coefficients Eq. (2). First, notice that at time t, $\alpha_{0,t} + \beta_{0,t}(s) + (\alpha_{1,t} + \beta_{1,t}(s))A_{i,t}$ can be rewritten in vector form as

$$1\omega_{0,t} + \beta_{0,t} + D_A(1\alpha_{1,t} + \beta_{1,t}).$$

(7)

where D_A is an $n \times n$ diagonal matrix with the $A_{i,t}$’s on the diagonal. Equation (7) can be rewritten as

$$1\omega_{0,t} + D_A(D_A^{-1}\beta_{0,t} + 1\alpha_{1,t} + \beta_{1,t}).$$

(8)
Figure 9. Mean and 90% credible interval by day for the (left) global intercept, α_0, and (right) coefficient for AOT, α_1, for Eq. (2).

Figure 10. Posterior mean estimates of the coefficients, $\alpha_0 + \beta_0(s)$ and $\alpha_1 + \beta_1(s)$ for 3 consecutive days from Eq. (2).
where \(D^{-1}_A \beta_{0,t} + \mathbf{1} \alpha_{1,t} + \beta_{1,t} \) is an adjusted estimate of \(\mathbf{1} \alpha_{1,t} + \beta_{1,t} \). We computed the posterior mean and 90 % credible interval for this adjusted parameter. The significance of these estimates over time and space are shown in Fig. 13 where now the significance more closely resembles that from Eq. (4). The daily proportion of significant estimates is between 0.23 and 0.63. Spatially, the midwest and central part of the United States tend to have more days with significant spatially varying adjusted estimates.

Posterior estimates and 90 % credible intervals for the remaining model parameters are given in Table 1. In general, PM\(_{2.5}\) is increasing with average daily temperature and relative humidity although the effect of relative humidity is not significant. The autocorrelation parameter is significant with mean estimate 0.671 indicating that PM\(_{2.5}\) on day \(t - 1 \) is very informative for PM\(_{2.5}\) on day \(t \).

Illustratively, Figs. 14 and 15 give spatial maps of the mean and standard deviation of the posterior predictive distribution of PM\(_{2.5}\) for 28 June and 3 July 2013, respectively. On 28 June, with the exception of Florida, estimates of PM\(_{2.5}\) are higher in the southern half of the country than the northern half. Standard deviations are higher in parts of Nevada, North Dakota, and along the Atlantic coast in North Carolina and Florida. The points on the map indicate the monitoring
Figure 14. Mean and standard deviation estimates of the posterior predictive distribution of PM$_{2.5}$ for 28 June 2013. The units of the mean are given in µg m$^{-3}$ whereas the standard deviation units are on the log-scale. The dots on the standard deviation map are the locations of the monitoring stations for the observed data used in fitting the model.

Figure 15. Mean and standard deviation estimates of the posterior predictive distribution of PM$_{2.5}$ for 3 July 2013. The units of the mean are given in µg m$^{-3}$ whereas the standard deviation units are on the log-scale. The dots on the standard deviation map are the locations of the monitoring stations for the observed data used in fitting the model.

Table 1. The posterior mean and 90% credible interval for parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>90% credible interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1 (avg. daily temp)</td>
<td>4.03*</td>
<td>(3.25*, 4.92*)</td>
</tr>
<tr>
<td>γ_2 (avg. daily relative humidity)</td>
<td>0.07*</td>
<td>(−0.37*, 0.51*)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.671</td>
<td>(0.660, 0.682)</td>
</tr>
<tr>
<td>C_{11}</td>
<td>0.405</td>
<td>(0.382, 0.435)</td>
</tr>
<tr>
<td>C_{21}</td>
<td>−0.038</td>
<td>(−0.094, −0.003)</td>
</tr>
<tr>
<td>C_{22}</td>
<td>0.098</td>
<td>(0.051, 0.184)</td>
</tr>
<tr>
<td>σ_p^2</td>
<td>0.035</td>
<td>(0.034, 0.037)</td>
</tr>
<tr>
<td>σ_A^2</td>
<td>0.325*</td>
<td>(0.320*, 0.330*)</td>
</tr>
<tr>
<td>κ</td>
<td>27.92</td>
<td>(27.85, 27.99)</td>
</tr>
</tbody>
</table>

* denotes $\times 10^{-3}$.

stations used in model fitting, noting that the areas of elevated uncertainty correspond to regions with few or no stations. On 3 July, the posterior mean surface of PM$_{2.5}$ is quite different from that on 28 June while the standard deviation surface is quite similar. Here, estimates of PM$_{2.5}$ are greater than 10 µg m$^{-3}$ in much of the central United States. A similarity between the 2 days is that PM$_{2.5}$ estimates are lower in Washington than most of the country.

5 Summary and future work

A hierarchical autoregressive model with daily spatially varying coefficients was employed to jointly model consecutive day average PM$_{2.5}$ across the United States using AOT data obtained from VIIRS, previous day PM$_{2.5}$, and meteorological covariates. The model allows for missingness in AOT data and carries out model-based imputation for AOT at missing grid cells using a Gaussian Markov random field (GMRF). Several submodels are considered for quantifying any improvement in daily PM$_{2.5}$ prediction using AOT versus predictions based solely on ground-monitoring data.

Our analyses show small in-sample improvement incorporating AOT into our autoregressive model for daily PM$_{2.5}$ prediction during this time period, but little predictive out-of-sample improvement. Paciorek and Liu (2009) found similar results in that AOT does not improve the monthly and yearly prediction of PM$_{2.5}$. Thus, models without AOT perform almost as well as models that incorporate AOT.
We considered further modeling efforts involving multiple sources of PM$_{2.5}$ data. Daily FRM PM$_{2.5}$ data showed similar correlation levels with AOT as the continuous PM$_{2.5}$ data. Thus, there seemed little to be gained by incorporating another source of PM$_{2.5}$ data. Further, the models proposed here assume the independent error arises from the process model and does not account for measurement error in PM$_{2.5}$. While the model could be modified to account for this additional source of error, this would weaken the explanatory power of the model. We believe that the predictive performance of the models is not penalized by this simplification.

The significance of AOT in out-of-sample prediction may be suppressed by the fact that AOT is a vertically and spatially integrated measure while PM$_{2.5}$ is observed at point locations and, hence, reflects small-scale variability. One might expect more benefit from AOT when predicting PM$_{2.5}$ at the areal scale of the AOT data. Our objective here is point-level prediction using AOT. Areal PM$_{2.5}$ at continental scale with more than 40,000 AOT grid cells presents a computationally challenging upscaling problem. The spatial and temporal misalignment between PM$_{2.5}$ and AOT could also be a cause for low correlation and insignificance of AOT. We are investigating additional covariates, such as distance to nearest road, that might further explain local variability of PM$_{2.5}$ beyond the meteorological variables currently being considered.

Capturing the vertical profile of AOT is a critical component in evaluating the utility of AOT in predicting PM$_{2.5}$. We are exploring spatially and temporally varying adjustments for AOT that utilize both computer model output and covariate information about the vertical profile. It has been demonstrated that physical measures from lidar, or the use of atmospheric models, can be used to account for a portion of the vertical structure. This may aid in the use of AOT to better predict PM$_{2.5}$ in the future (Toth et al., 2014; Zeeshan and Oanh, 2014; Chu et al., 2015; Hutchison et al., 2008).

Due to the quality assurance protocol of AOT from VIIRS, there is a lot of missing AOT data, which may also contribute to the ineffectiveness of AOT in our model in terms of out-of-sample prediction. Improvement in AOT retrieval algorithms, particularly with regard to surface reflectivity, and improved cloud screening may lead to lower levels of missingness in the future. The GOES-R Advanced Baseline Imager (ABI) scheduled to launch in March of 2016 will provide an AOD data product at 2 km × 2 km spatial resolution every minute of the continental United States (Huff et al., 2012). The GOES-R AOD will allow for hourly composites of AOD, which may help alleviate the missingness of data as seen with the current polar-orbiting instruments.
Figure A1. Normal Q–Q plots of the log-transformed PM$_{2.5}$ on 4 consecutive days.

Appendix A

A1 Data transformations

Normal Q–Q plots of the log-transformation of PM$_{2.5}$ and square root transformation of AOT are shown for 4 days in Figs. A1 and A2, respectively. Both figures seem to suggest a slight derivation from normality although the deviations are minimal and the transformations agree with previous work in the literature (e.g., Berrocal et al., 2010; Paciorek and Liu, 2012).

A2 Posterior derivations

Full posterior inference is obtained using a hybrid Metropolis-within-Gibbs sampler. Let $A_{i,t}$ denote AOD at grid cell i on day t. This value is either observed such that $A_{i,t} = A_{i,t}$ or is predicted within the algorithm. Then, define $Z_t = [1, A_t]$ and $K_t = [I, \text{diag}(A_t)]$. Additionally, let $\alpha_t = [\alpha_{t,0}, \alpha_{t,1}]$ and $\beta_t = [\beta_{t,0}, \beta_{t,1}]$.

The full conditional distributions are given in details below:

- $\alpha_0 | \cdot \text{MVN}(U^{-1}V, U^{-1})$,
 where
 $U = Z_0' \Sigma_p^{-1} Z_0 + \Sigma_\alpha^{-1}$,
 $V = Z_0' \Sigma_p^{-1} (P_0 - X_0 y - K_0 \beta_0)$,
 $\Sigma_p = \sigma_p^2 I$, and Σ_α is the prior covariance matrix of α.

- For $t = 1, \ldots, T$, $\alpha_t | \cdot \text{MVN}(U^{-1}V, U^{-1})$.

- $\beta_0 | \cdot \text{MVN}(U^{-1}V, U^{-1})$,
 where
 $U = K_0' \Sigma_p^{-1} K_0 + \Sigma_{\beta 0}^{-1}$,
 $V = K_0' \Sigma_p^{-1} (P_0 - Z_0 \alpha_0 - X_0 y)$,
 and $\Sigma_{\beta 0} = \left[C \otimes I \right] \left[R_{0,0} \quad 0 \right] \left[C' \otimes I \right]$.

- For $t = 1, \ldots, T$, $\beta_t | \cdot \text{MVN}(U^{-1}V, U^{-1})$.

where

$\alpha_t = Z_t^{-1} \Sigma_p^{-1} Z_t + \Sigma_\alpha^{-1}$,

$V = Z_t' \Sigma_p^{-1} (P_t - X_t y - K_t \beta_t - P_{t-1})$.

$\gamma = V | \cdot \text{MVN}(U^{-1}V, U^{-1})$,

where

$U = \sum_{t=1}^T X_t' \Sigma_p^{-1} X_t + \Sigma_\gamma^{-1}$,

$V = X_t' \Sigma_p^{-1} (P_t - Z_t \alpha_t - K_t \beta_t - \rho P_{t-1}) + \sum_{t=1}^T X_t' \Sigma_p^{-1} (P_t - Z_t \alpha_t - K_t \beta_t - \rho P_{t-1})$, and Σ_γ is the prior covariance matrix of γ.

www.adv-stat-clim-meteorol-oceanogr.net/1/59/2015/
where
\[
U = K_\gamma \Sigma^{-1}_p K_s + \Sigma^{-1}_\beta,
\]
\[
V = K_\gamma \Sigma^{-1}_p (P_t - Z_\gamma \alpha_s - X_\gamma \gamma - \rho P_{t-1}),
\]
and \(\Sigma_\beta = [C \otimes I] \begin{bmatrix} R_{0,0} & 0 \\ 0 & R_{1,1} \end{bmatrix} [C \otimes I].\)

- \(\sigma^2_p \mid \sim I.G.((a_p + \frac{(T+1)m}{2}), \ b_p + \frac{1}{2}(P_0 - Z_0 \alpha_0 - X_0 \gamma - K_0 \beta_0)^\gamma \)
- \(P_0 - Z_0 \alpha_0 - X_0 \gamma - K_0 \beta_0)\)
- \(\frac{1}{2} \sum_{i=0}^T (P_t - Z_\gamma \alpha_s - X_\gamma \gamma - K_\gamma \beta_s - \rho P_{t-1})^\gamma\)

where \(m = \) number of monitoring stations.

- \(\sigma^2_\beta \mid \sim I.G.((a_\beta + \sum_{i=0}^m), \ b_\beta + \frac{1}{2} \sum_{i=0}^T (A_i - M_i \theta_i)^\gamma (A_i - M_i \theta_i),\)

where \(Q\) is the second-order neighborhood matrix and \(N\) denotes the fixed number of grid cells in the spatial lattice for AOD.

- Sampling \((\phi_{0,t}, \phi_{1,t})\) for \(t = 0, \ldots, T\) requires a Metropolis–Hastings algorithm. The candidate values, denoted \(\phi_{0,t}', \phi_{1,t}'\), are accepted with probability

\[
\min \left(1, \frac{\prod_{i=0}^T p(\beta_i | C_{\phi_{0,i}', \phi_{1,i}'}, \pi(\phi_{0,i}', \phi_{1,i}') g(\phi_{0,i}, \phi_{1,i}, \phi_{0,i}', \phi_{1,i}'))}{\prod_{i=0}^T p(\beta_i | C_{\phi_{0,i}, \phi_{1,i}}, \pi(\phi_{0,i}, \phi_{1,i}) g(\phi_{0,i}, \phi_{1,i}, \phi_{0,i}', \phi_{1,i}'))} \right),
\]

where \(\pi(\cdot)\) denotes the prior distribution and \(g(\cdot; \cdot)\) denotes the proposal distribution.

- Sampling \(C\) also requires a Metropolis–Hastings algorithm. The three parameters, \(C_{11}, C_{21}, C_{22}\) are updated in a block where the candidate, denoted \(C' = \begin{bmatrix} C_{11}' & 0 \\ C_{21}' & C_{22}' \end{bmatrix}\)

is accepted with probability

\[
\min \left(1, \frac{\prod_{i=0}^T p(\beta_i | C', \phi_{0,i}, \phi_{1,i}) \pi(C') g(C | C')}{\prod_{i=0}^T p(\beta_i | C_{\phi_{0,i}, \phi_{1,i}}, \pi(\phi_{0,i}, \phi_{1,i}) g(\phi_{0,i}, \phi_{1,i}, \phi_{0,i}', \phi_{1,i}'))} \right).
\]

- The autoregressive parameter, \(\rho\), requires a Metropolis–Hastings step where \(\rho^a\) is accepted with probability

\[
\min \left(1, \frac{\prod_{i=0}^T p(\rho | \phi_{0,i}, \phi_{1,i}, \gamma, \beta_s, \tau_p, A_i, \rho^a) \pi(\rho^a) g(\rho; \rho^a)}{\prod_{i=0}^T p(\rho | \phi_{0,i}, \phi_{1,i}, \gamma, \beta_s, \tau_p, A_i, \rho) \pi(\rho) g(\rho; \rho)} \right).
\]

Recall that we must infill AOD on the fly for grid cells that contain monitoring stations but are missing AOD. When AOD is observed at grid cell \(i\) on day \(t\), \(A_{i,t} = A_{i,t}\). For each grid cell that is missing AOD but contains a monitoring station, we must predict AOD. Let \(J_i\) denote the set of grid cells that contain a monitoring station but are missing AOD on day \(t\). Further, for \(j \in J_i\), let \(s_j\) denote the location of the monitoring station in the grid. Then, for each \(j\), we sample \(A_{j,i}\) by sampling from the posterior predictive distribution. That is, for \(t = 0\) and \(j \in \{J_i\}\),

\[
\tilde{A}_{j,i} \mid \sim N(U^{-1} \gamma V, U^{-1}),
\]

where

\[
U = \frac{\alpha_1 + \beta_1(s_j)}{\sigma_A^2} + \frac{1}{\sigma_A^2},
\]

\[
V = \frac{\alpha_1 + \beta_1(s_j)}{\sigma_A^2} \left(P_0(s_j) - \alpha_0 - X_0(s_j) \gamma \right) - \beta_0(s_j) + \frac{\theta_{j,i}}{\sigma_A^2}.
\]

For \(t = 1, \ldots, T\) and \(j \in \{J_i\}\),

\[
\tilde{A}_{j,i} \mid \sim N(U^{-1} \gamma V, U^{-1}),
\]

where

\[
U = \frac{\alpha_1 + \beta_1(s_j)}{\sigma_A^2} + \frac{1}{\sigma_A^2},
\]

\[
V = \frac{\alpha_1 + \beta_1(s_j)}{\sigma_A^2} \left(P_t(s_j) - \alpha_0 - X_0(s_j) \gamma \right) - \beta_0(s_j) + \rho P_{t-1}(s_j) + \frac{\theta_{j,i}}{\sigma_A^2}.
\]

If grid cell \(i\) contains a monitoring station,

\[
\theta_{i,t} \mid \theta_{j \neq i,t} \sim \mathcal{N} \left(\left(\frac{1}{\sigma_A^2 + \kappa p} \right)^{-1} \left(\frac{1}{\sigma_A^2} \tilde{A}_{i,t} + \tilde{\theta}_{i,t} \kappa p \right), \left(\frac{1}{\sigma_A^2 + \kappa p} \right)^{-1} \right),
\]

where \(p_i\) is the number of neighbors of cell \(i\) and \(\tilde{\theta}_{i,t} = \frac{1}{p} \sum_{j \neq i} \theta_{j,t}\).

If grid cell \(i\) does not contain a monitoring station,

\[
\theta_{i,t} \mid \theta_{j \neq i,t} \sim \mathcal{N} \left(\tilde{\theta}_{i,t}, \frac{1}{\kappa p} \right).
\]

Acknowledgements. The work of the first author was supported in part by funding through the US EPA’s Office of Research and Development using EPA contract EP-13-D-000257. The authors thank James Szykman of the National Exposure Research Laboratory, Environmental Science Division, Landscape Characterization Branch (US EPA) for providing the VIIRS satellite aerosol optical thickness (AOT) data product used in this analysis and valuable discussion that greatly improved this manuscript.

Disclaimer. The US Environmental Protection Agency through its Office of Research and Development partially collaborated in this research. Although it has been reviewed by the Agency and approved for publication, it does not necessarily reflect the Agency’s policies or views.

Edited by: C. Paciorek
Reviewed by: two anonymous referees

References

