Articles | Volume 1, issue 1
https://doi.org/10.5194/ascmo-1-59-2015
https://doi.org/10.5194/ascmo-1-59-2015
16 Dec 2015
 | 16 Dec 2015

Autoregressive spatially varying coefficients model for predicting daily PM2.5 using VIIRS satellite AOT

E. M. Schliep, A. E. Gelfand, and D. M. Holland

Related subject area

Statistics
Modeling general circulation model bias via a combination of localized regression and quantile mapping methods
Benjamin James Washington, Lynne Seymour, and Thomas L. Mote
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 1–28, https://doi.org/10.5194/ascmo-9-1-2023,https://doi.org/10.5194/ascmo-9-1-2023, 2023
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory
Katarina Lashgari, Gudrun Brattström, Anders Moberg, and Rolf Sundberg
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 225–248, https://doi.org/10.5194/ascmo-8-225-2022,https://doi.org/10.5194/ascmo-8-225-2022, 2022
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022,https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary
A conditional approach for joint estimation of wind speed and direction under future climates
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, https://doi.org/10.5194/ascmo-8-205-2022,https://doi.org/10.5194/ascmo-8-205-2022, 2022
Short summary
Comparing climate time series – Part 2: A multivariate test
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 73–85, https://doi.org/10.5194/ascmo-7-73-2021,https://doi.org/10.5194/ascmo-7-73-2021, 2021
Short summary

Cited articles

Al-Hamdan, M. Z., Crosson, W. L., Limaye, A. S., Rickman, D. L., Quattrochi, D. A., Estes Jr., M. G., Qualters, J. R., Sinclair, A. H., Tolsma, D. D., Adeniyi, K. A., and Niskar, A. S.: Methods for characterizing fine particulate matter using ground observations and remotely sensed data: potential use for environmental public health surveillance, J. Air Waste Manage., 59, 865–881, 2009.
Berrocal, V. J., Gelfand, A. E., and Holland, D. M.: A bivariate space-time downscaler under space and time misalignment, Ann. Appl. Stat., 4, 1942–1975, 2010.
Berrocal, V. J., Gelfand, A. E., and Holland, D. M.: Space-Time Data Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality, Biometrics, 68, 837–848, 2012.
Besag, J., York, J., and Mollié, A.: Bayesian image restoration, with two applications in spatial statistics, Ann. I. Stat. Math., 43, 1–20, 1991.
Chu, D. A., Ferrare, R., Szykman, J., Lewis, J., Scarino, A., Hains, J., Burton, S., Chen, G., Tsai, T., Hostetler, C., Hair, J., Holben, B., and Crawford, J.: Regional characteristics of the relationship between columnar AOD and surface PM2.5: Application of lidar aerosol extinction profiles over Baltimore-Washington Corridor during DISCOVER-AQ, Atmos. Environ., 101, 338–349, 2015.
Download
Short summary
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the US motivates the need for advanced statistical models to predict air quality metrics. We propose a statistical model that jointly models ground-monitoring station data and satellite-obtained data allowing for temporal and spatial misalignment, missingness, and spatially and temporally varying correlation to enhance prediction of particulate matter.